Biblio
Outsourcing services to third-party providers comes with a high security cost-to fully trust the providers. Using trusted hardware can help, but current trusted execution environments do not adequately support services that process very large scale datasets. We present LASTGT, a system that bridges this gap by supporting the execution of self-contained services over a large state, with a small and generic trusted computing base (TCB). LASTGT uses widely deployed trusted hardware to guarantee integrity and verifiability of the execution on a remote platform, and it securely supplies data to the service through simple techniques based on virtual memory. As a result, LASTGT is general and applicable to many scenarios such as computational genomics and databases, as we show in our experimental evaluation based on an implementation of LAST-GT on a secure hypervisor. We also describe a possible implementation on Intel SGX.
Cloud computing is rapidly reshaping the server administration landscape. The widespread use of virtualization and the increasingly high server consolidation ratios, in particular, have introduced unprecedented security challenges for users, increasing the exposure to intrusions and opening up new opportunities for attacks. Deploying security mechanisms in the hypervisor to detect and stop intrusion attempts is a promising strategy to address this problem. Existing hypervisor-based solutions, however, are typically limited to very specific classes of attacks and introduce exceedingly high performance overhead for production use. In this paper, we present Slick (Storage-Level Intrusion ChecKer), an intrusion detection system (IDS) for virtualized storage devices. Slick detects intrusion attempts by efficiently and transparently monitoring write accesses to critical regions on storage devices. The low-overhead monitoring component operates entirely inside the hypervisor, with no introspection or modifications required in the guest VMs. Using Slick, users can deploy generic IDS rules to detect a broad range of real-world intrusions in a flexible and practical way. Experimental results confirm that Slick is effective at enhancing the security of virtualized servers, while imposing less than 5% overhead in production.