Visible to the public Biblio

Filters: Keyword is test case generation  [Clear All Filters]
2022-05-06
Wotawa, Franz, Klampfl, Lorenz, Jahaj, Ledio.  2021.  A framework for the automation of testing computer vision systems. 2021 IEEE/ACM International Conference on Automation of Software Test (AST). :121–124.
Vision systems, i.e., systems that enable the detection and tracking of objects in images, have gained substantial importance over the past decades. They are used in quality assurance applications, e.g., for finding surface defects in products during manufacturing, surveillance, but also automated driving, requiring reliable behavior. Interestingly, there is only little work on quality assurance and especially testing of vision systems in general. In this paper, we contribute to the area of testing vision software, and present a framework for the automated generation of tests for systems based on vision and image recognition with the focus on easy usage, uniform usability and expandability. The framework makes use of existing libraries for modifying the original images and to obtain similarities between the original and modified images. We show how such a framework can be used for testing a particular industrial application on identifying defects on riblet surfaces and present preliminary results from the image classification domain.
2020-09-28
Simos, Dimitris E., Garn, Bernhard, Zivanovic, Jovan, Leithner, Manuel.  2019.  Practical Combinatorial Testing for XSS Detection using Locally Optimized Attack Models. 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :122–130.
In this paper, we present a combinatorial testing methodology for automated black-box security testing of complex web applications. The focus of our work is the identification of Cross-site Scripting (XSS) vulnerabilities. We introduce a new modelling scheme for test case generation of XSS attack vectors consisting of locally optimized attack models. The modelling approach takes into account the response and behavior of the web application and is particularly efficient when used in conjunction with combinatorial testing. In addition to the modelling scheme, we present a research prototype of a security testing tool called XSSInjector, which executes attack vectors generated from our methodology against web applications. The tool also employs a newly developed test oracle for detecting XSS which allow us to precisely identify whether injected JavaScript is actually executed and thus eliminate false positives. Our testing methodology is sufficiently generic to be applied to any web application that returns HTML code. We describe the foundations of our approach and validate it via an extensive case study using a verification framework and real world web applications. In particular, we have found several new critical vulnerabilities in popular forum software, library management systems and gallery packages.
2018-04-04
Zhang, B., Ye, J., Feng, C., Tang, C..  2017.  S2F: Discover Hard-to-Reach Vulnerabilities by Semi-Symbolic Fuzz Testing. 2017 13th International Conference on Computational Intelligence and Security (CIS). :548–552.
Fuzz testing is a popular program testing technique. However, it is difficult to find hard-to-reach vulnerabilities that are nested with complex branches. In this paper, we propose semi-symbolic fuzz testing to discover hard-to-reach vulnerabilities. Our method groups inputs into high frequency and low frequency ones. Then symbolic execution is utilized to solve only uncovered branches to mitigate the path explosion problem. Especially, in order to play the advantages of fuzz testing, our method locates critical branch for each low frequency input and corrects the generated test cases to comfort the branch condition. We also implemented a prototype\textbackslashtextbarS2F, and the experimental results show that S2F can gain 17.70% coverage performance and discover more hard-to-reach vulnerabilities than other vulnerability detection tools for our benchmark.
2017-08-02
Menninghaus, Mathias, Pulvermüller, Elke.  2016.  Towards Using Code Coverage Metrics for Performance Comparison on the Implementation Level. Proceedings of the 7th ACM/SPEC on International Conference on Performance Engineering. :101–104.

The development process for new algorithms or data structures often begins with the analysis of benchmark results to identify the drawbacks of already existing implementations. Furthermore it ends with the comparison of old and new implementations by using one or more well established benchmark. But how relevant, reproducible, fair, verifiable and usable those benchmarks may be, they have certain drawbacks. On the one hand a new implementation may be biased to provide good results for a specific benchmark. On the other hand benchmarks are very general and often fail to identify the worst and best cases of a specific implementation. In this paper we present a new approach for the comparison of algorithms and data structures on the implementation level using code coverage. Our approach uses model checking and multi-objective evolutionary algorithms to create test cases with a high code coverage. It then executes each of the given implementations with each of the test cases in order to calculate a cross coverage. Using this it calculates a combined coverage and weighted performance where implementations, which are not fully covered by the test cases of the other implementations, are punished. These metrics can be used to compare the performance of several implementations on a much deeper level than traditional benchmarks and they incorporate worst, best and average cases in an equal manner. We demonstrate this approach by two example sets of algorithms and outline the next research steps required in this context along with the greatest risks and challenges.