Biblio
Humans are majorly identified as the weakest link in cybersecurity. Tertiary institution students undergo lot of cybersecurity issues due to their constant Internet exposure, however there is a lack in literature with regards to tertiary institution students' cybersecurity behaviors. This research aimed at linking the factors responsible for tertiary institutions students' cybersecurity behavior, via validated cybersecurity factors, Perceived Vulnerability (PV); Perceived Barriers (PBr); Perceived Severity (PS); Security Self-Efficacy (SSE); Response Efficacy (RE); Cues to Action (CA); Peer Behavior (PBhv); Computer Skills (CS); Internet Skills (IS); Prior Experience with Computer Security Practices (PE); Perceived Benefits (PBnf); Familiarity with Cyber-Threats (FCT), thus exploring the relationship between the factors and the students' Cybersecurity Behaviors (CSB). A cross-sectional online survey was used to gather data from 450 undergraduate and postgraduate students from tertiary institutions within Klang Valley, Malaysia. Correlation Analysis was used to find the relationships existing among the cybersecurity behavioral factors via SPSS version 25. Results indicate that all factors were significantly related to the cybersecurity behaviors of the students apart from Perceived Severity. Practically, the study instigates the need for more cybersecurity training and practices in the tertiary institutions.
With the rapid development of the Internet, the dark network has also been widely used in the Internet [1]. Due to the anonymity of the dark network, many illegal elements have committed illegal crimes on the dark. It is difficult for law enforcement officials to track the identity of these cyber criminals using traditional network survey techniques based on IP addresses [2]. The threat information is mainly from the dark web forum and the dark web market. In this paper, we introduce the current mainstream dark network communication system TOR and develop a visual dark web forum post association analysis system to graphically display the relationship between various forum messages and posters, and help law enforcement officers to explore deep levels. Clues to analyze crimes in the dark network.
SDN with centralized control is more vulnerable to suffer from APT than traditional network. To accurately detect the APT that the SDN may suffer from, this paper proposes the APT detection method based on attack tree for SDN. Firstly, after deeply analyzing the process of APT in SDN, we establish APT attack model based on attack tree. Then, correlation analysis of attack behavior that detected by multiple detection methods to get attack path. Finally, the attack path match the APT attack model to judge whether there is an APT in SDN. Experiment shows that the method is more accurate to detect APT in SDN, and less overhead.
To identify potential risks to the system security presented by time series it is offered to use wavelet analysis, the indicator of time-and-frequency distribution, the correlation analysis of wavelet-spectra for receiving rather complete range of data about the process studied. The indicator of time-and-frequency localization of time series was proposed allowing to estimate the speed of non-stationary changing. The complex approach is proposed to use the wavelet analysis, the time-and-frequency distribution of time series and the wavelet spectra correlation analysis; this approach contributes to obtaining complete information on the studied phenomenon both in numerical terms, and in the form of visualization for identifying and predicting potential system security threats.
The paper considers the general structure of Pseudo-random binary sequence generator based on the numerical solution of chaotic differential equations. The proposed generator architecture divides the generation process in two stages: numerical simulation of the chaotic system and converting the resulting sequence to a binary form. The new method of calculation of normalization factor is applied to the conversion of state variables values to the binary sequence. Numerical solution of chaotic ODEs is implemented using semi-implicit symmetric composition D-method. Experimental study considers Thomas and Rössler attractors as test chaotic systems. Properties verification for the output sequences of generators is carried out using correlation analysis methods and NIST statistical test suite. It is shown that output sequences of investigated generators have statistical and correlation characteristics that are specific for the random sequences. The obtained results can be used in cryptography applications as well as in secure communication systems design.
Supercomputers are widely applied in various domains, which have advantage of high processing capability and mass storage. With growing supercomputing users, the system security receives comprehensive attentions, and becomes more and more important. In this paper, according to the characteristics of supercomputing environment, we perform an in-depth analysis of existing security problems in the process of using resources. To solve these problems, we propose a security analysis method and a prototype system for supercomputing users' behavior. The basic idea is to restore the complete users' behavior paths and operation records based on the supercomputing business process and track the use of resources. Finally, the method is evaluated and the results show that the security analysis method of users' behavior can help administrators detect security incidents in time and respond quickly. The final purpose is to optimize and improve the security level of the whole system.
Cloud services have made large contributions to the agile developments and rapid revisions of various applications. However, the performance of these applications is still one of the largest concerns for developers. Although it has created many performance analysis frameworks, most of them have not been efficient for the rapid application revisions because they have required performance models, which may have had to be remodeled whenever application revisions occurred. We propose an analysis framework for diagnosis of application performance anomalies. We designed our framework so that it did not require any performance models to be efficient in rapid application revisions. That investigates the Pearson correlation and association rules between system metrics and application performance. The association rules are widely used in data-mining areas to find relations between variables in databases. We demonstrated through an experiment and testing on a real data set that our framework could select causal metrics even when the metrics were temporally correlated, which reduced the false negatives obtained from cause diagnosis. We evaluated our framework from the perspective of the expected remaining diagnostic costs of framework users. The results indicated that it was expected to reduce the diagnostic costs by 84.8\textbackslash% at most, compared with a method that only used the Pearson correlation.