Visible to the public Biblio

Filters: Keyword is Template Protection  [Clear All Filters]
2022-03-09
Jie, Lucas Chong Wei, Chong, Siew-Chin.  2021.  Histogram of Oriented Gradient Random Template Protection for Face Verification. 2021 9th International Conference on Information and Communication Technology (ICoICT). :192—196.
Privacy preserving scheme for face verification is a biometric system embedded with template protection to protect the data in ensuring data integrity. This paper proposes a new method called Histogram of Oriented Gradient Random Template Protection (HOGRTP). The proposed method utilizes Histogram of Oriented Gradient approach as a feature extraction technique and is combined with Random Template Protection method. The proposed method acts as a multi-factor authentication technique and adds a layer of data protection to avoid the compromising biometric issue because biometric is irreplaceable. The performance accuracy of HOGRTP is tested on the unconstrained face images using the benchmarked dataset, Labeled Face in the Wild (LFW). A promising result is obtained to prove that HOGRTP achieves a higher verification rate in percentage than the pure biometric scheme.
2020-08-28
Kolberg, Jascha, Bauspieß, Pia, Gomez-Barrero, Marta, Rathgeb, Christian, Dürmuth, Markus, Busch, Christoph.  2019.  Template Protection based on Homomorphic Encryption: Computationally Efficient Application to Iris-Biometric Verification and Identification. 2019 IEEE International Workshop on Information Forensics and Security (WIFS). :1—6.

When employing biometric recognition systems, we have to take into account that biometric data are considered sensitive data. This has raised some privacy issues, and therefore secure systems providing template protection are required. Using homomorphic encryption, permanent protection can be ensured, since templates are stored and compared in the encrypted domain. In addition, the unprotected system's accuracy is preserved. To solve the problem of the computational overload linked to the encryption scheme, we present an early decision making strategy for iris-codes. In order to improve the recognition accuracy, the most consistent bits of the iris-code are moved to the beginning of the template. This allows an accurate block-wise comparison, thereby reducing the execution time. Hence, the resulting system grants template protection in a computationally efficient way. More specifically, in the experimental evaluation in identification mode, the block-wise comparison achieves a 92% speed-up on the IITD database with 300 enrolled templates.

2018-07-18
Abidin, Aysajan, Argones Rúa, Enrique, Peeters, Roel.  2017.  Uncoupling Biometrics from Templates for Secure and Privacy-Preserving Authentication. Proceedings of the 22Nd ACM on Symposium on Access Control Models and Technologies. :21–29.

Biometrics are widely used for authentication in several domains, services and applications. However, only very few systems succeed in effectively combining highly secure user authentication with an adequate privacy protection of the biometric templates, due to the difficulty associated with jointly providing good authentication performance, unlinkability and irreversibility to biometric templates. This thwarts the use of biometrics in remote authentication scenarios, despite the advantages that this kind of architectures provides. We propose a user-specific approach for decoupling the biometrics from their binary representation before using biometric protection schemes based on fuzzy extractors. This allows for more reliable, flexible, irreversible and unlinkable protected biometric templates. With the proposed biometrics decoupling procedures, biometric metadata, that does not allow to recover the original biometric template, is generated. However, different biometric metadata that are generated starting from the same biometric template remain statistically linkable, therefore we propose to additionally protect these using a second authentication factor (e.g., knowledge or possession based). We demonstrate the potential of this approach within a two-factor authentication protocol for remote biometric authentication in mobile scenarios.

2017-08-02
Khalaf, Emad Taha, Mohammed, Muamer N., Sulaiman, Norrozila.  2016.  Iris Template Protection Based on Enhanced Hill Cipher. Proceedings of the 2016 International Conference on Communication and Information Systems. :53–57.

Biometric is uses to identify authorized person based on specific physiological or behavioral features. Template protection is a crucial requirement when designing an authentication system, where the template could be modified by attacker. Hill Cipher is a block cipher and symmetric key algorithm it has several advantages such as simplicity, high speed and high throughput can be used to protect Biometric Template. Unfortunately, Hill Cipher has some disadvantages such as takes smaller sizes of blocks, very simple and vulnerable for exhaustive key search attack and known plain text attack, also the key matrix which entered should be invertible. This paper proposed an enhancement to overcome these drawbacks of Hill Cipher by using a large and random key with large data block, beside overcome the Invertible-key Matrix problem. The efficiency of encryption has been checked out by Normalized Correlation Coefficient (NCC) and running time.