Visible to the public Biblio

Filters: Keyword is Biometric cryptosystem  [Clear All Filters]
2021-01-18
Bentahar, A., Meraoumia, A., Bendjenna, H., Chitroub, S., Zeroual, A..  2020.  Fuzzy Extractor-Based Key Agreement for Internet of Things. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). :25–29.
The emergence of the Internet of Things with its constraints obliges researchers in this field to find light and accurate solutions to secure the data exchange. This document presents secure authentication using biometrics coupled with an effective key agreement scheme to save time and energy. In our scheme, the agreed key is used to encrypt transmission data between different IoT actors. While the fuzzy extractor based on the fuzzy vault principle, is used as authentication and as key agreement scheme. Besides, our system incorporates the Reed Solomon and Hamming codes to give some tolerance to errors. The experimental results have been discussed according to several recognition rates and computation times. Indeed, the recognition rate results have been compared to other works to validate our system. Also, we clarify how our system resists to specific transmission attacks without affecting lightness and accuracy.
2017-08-02
Sapkal, Shubhangi, Deshmukh, R. R..  2016.  Biometric Template Protection with Fuzzy Vault and Fuzzy Commitment. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :60:1–60:6.

Conventional security methods like password and ID card methods are now rapidly replacing by biometrics for identification of a person. Biometrics uses physiological or behavioral characteristics of a person. Usage of biometric raises critical privacy and security concerns that, due to the noisy nature of biometrics, cannot be addressed using standard cryptographic methods. The loss of an enrollment biometric to an attacker is a security hazard because it may allow the attacker to get an unauthorized access to the system. Biometric template can be stolen and intruder can get access of biometric system using fake input. Hence, it becomes essential to design biometric system with secure template or if the biometric template in an application is compromised, the biometric signal itself is not lost forever and a new biometric template can be issued. One way is to combine the biometrics and cryptography or use transformed data instead of original biometric template. But traditional cryptography methods are not useful in biometrics because of intra-class variation. Biometric cryptosystem can apply fuzzy vault, fuzzy commitment, helper data and secure sketch, whereas, cancelable biometrics uses distorting transforms, Bio-Hashing, and Bio-Encoding techniques. In this paper, biometric cryptosystem is presented with fuzzy vault and fuzzy commitment techniques for fingerprint recognition system.