Visible to the public Biblio

Filters: Keyword is factor analysis  [Clear All Filters]
2022-09-09
Xu, Rong-Zhen, He, Meng-Ke.  2020.  Application of Deep Learning Neural Network in Online Supply Chain Financial Credit Risk Assessment. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :224—232.
Under the background of "Internet +", in order to solve the problem of deeply mining credit risk behind online supply chain financial big data, this paper proposes an online supply chain financial credit risk assessment method based on deep belief network (DBN). First, a deep belief network evaluation model composed of Restricted Boltzmann Machine (RBM) and classifier SOFTMAX is established, and the performance evaluation test of three kinds of data sets is carried out by using this model. Using factor analysis to select 8 indicators from 21 indicators, and then input them into RBM for conversion to form a more scientific evaluation index, and finally input them into SOFTMAX for evaluation. This method of online supply chain financial credit risk assessment based on DBN is applied to an example for verification. The results show that the evaluation accuracy of this method is 96.04%, which has higher evaluation accuracy and better rationality compared with SVM method and Logistic method.
2021-03-01
Perisetty, A., Bodempudi, S. T., Shaik, P. Rahaman, Kumar, B. L. N. Phaneendra.  2020.  Classification of Hyperspectral Images using Edge Preserving Filter and Nonlinear Support Vector Machine (SVM). 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). :1050–1054.
Hyperspectral image is acquired with a special sensor in which the information is collected continuously. This sensor will provide abundant data from the scene captured. The high voluminous data in this image give rise to the extraction of materials and other valuable items in it. This paper proposes a methodology to extract rich information from the hyperspectral images. As the information collected in a contiguous manner, there is a need to extract spectral bands that are uncorrelated. A factor analysis based dimensionality reduction technique is employed to extract the spectral bands and a weight least square filter is used to get the spatial information from the data. Due to the preservation of edge property in the spatial filter, much information is extracted during the feature extraction phase. Finally, a nonlinear SVM is applied to assign a class label to the pixels in the image. The research work is tested on the standard dataset Indian Pines. The performance of the proposed method on this dataset is assessed through various accuracy measures. These accuracies are 96%, 92.6%, and 95.4%. over the other methods. This methodology can be applied to forestry applications to extract the various metrics in the real world.
2019-03-11
Xie, X. L., Xue, W. X..  2018.  An Empirical Study of Web Software Trustworthiness Measurement. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :1474–1481.

The aim of this paper is to present a fresh methodology of improved evidence synthesis for assessing software trustworthiness, which can unwind collisions stemming from proofs and these proofs' own uncertainties. To achieve this end, the paper, on the ground of ISO/IEC 9126 and web software attributes, models the indicator framework by factor analysis. Then, the paper conducts an calculation of the weight for each indicator via the technique of structural entropy and makes a fuzzy judgment matrix concerning specialists' comments. This study performs a computation of scoring and grade regarding software trustworthiness by using of the criterion concerning confidence degree discernment and comes up with countermeasures to promote trustworthiness. Relying on online accounting software, this study makes an empirical analysis to further confirm validity and robustness. This paper concludes with pointing out limitations.

2017-08-22
Zhang, Lihua, Shang, Yue, Qin, Qi, Chen, Shaowei, Zhao, Shuai.  2016.  Research on Fault Feature Extraction for Analog Circuits. Proceedings of the 8th International Conference on Signal Processing Systems. :173–177.

In order to realize the accurate positioning and recognition effectively of the analog circuit, the feature extraction of fault information is an extremely important port. This arrival based on the experimental circuit which is designed as a failure mode to pick-up the fault sample set. We have chosen two methods, one is the combination of wavelet transform and principal component analysis, the other is the factorial analysis for the fault data's feature extraction, and we also use the extreme learning machine to train and diagnose the data, to compare the performance of these two methods through the accuracy of the diagnosis. The results of the experiment shows that the data which we get from the experimental circuit, after dealing with these two methods can quickly get the fault location.