Biblio
Modbus TCP/IP protocol is a commonly used protocol in industrial automation control systems, systems responsible for sensitive operations such as gas turbine operation and refinery control. The protocol was designed decades ago with no security features in mind. Denial of service attack and malicious parameter command injection are examples of attacks that can exploit vulnerabilities in industrial control systems that use Modbus/TCP protocol. This paper discusses and explores the use of intrusion detection and prevention systems (IDPS) with deep packet inspection (DPI) capabilities and DPI industrial firewalls that have capability to detect and stop highly specialized attacks hidden deep in the communication flow. The paper has the following objectives: (i) to develop signatures for IDPS for common attacks on Modbus/TCP based network architectures; (ii) to evaluate performance of three IDPS - Snort, Suricata and Bro - in detecting and preventing common attacks on Modbus/TCP based control systems; and (iii) to illustrate and emphasize that the IDPS and industrial firewalls with DPI capabilities are not preventing but only mitigating likelihood of exploitation of Modbus/TCP vulnerabilities in the industrial and automation control systems. The results presented in the paper illustrate that it might be challenging task to achieve requirements on real-time communication in some industrial and automation control systems in case the DPI is implemented because of the latency and jitter introduced by these IDPS and DPI industrial firewall.
The security and typical attack behavior of Modbus/TCP industrial network communication protocol are analyzed. The data feature of traffic flow is extracted through the operation mode of the depth analysis abnormal behavior, and the intrusion detection method based on the support vector machine (SVM) is designed. The method analyzes the data characteristics of abnormal communication behavior, and constructs the feature input structure and detection system based on SVM algorithm by using the direct behavior feature selection and abnormal behavior pattern feature construction. The experimental results show that the method can effectively improve the detection rate of abnormal behavior, and enhance the safety protection function of industrial network.