Visible to the public Biblio

Filters: Keyword is RASA  [Clear All Filters]
2023-05-12
Albornoz-De Luise, Romina Soledad, Arnau-González, Pablo, Arevalillo-Herráez, Miguel.  2022.  Conversational Agent Design for Algebra Tutoring. 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :604–609.
Conversational Intelligent Tutoring Systems (CITS) in learning environments are capable of providing personalized instruction to students in different domains, to improve the learning process. This interaction between the Intelligent Tutoring System (ITS) and the user is carried out through dialogues in natural language. In this study, we use an open source framework called Rasa to adapt the original button-based user interface of an algebraic/arithmetic word problem-solving ITS to one based primarily on the use of natural language. We conducted an empirical study showing that once properly trained, our conversational agent was able to recognize the intent related to the content of the student’s message with an average accuracy above 0.95.
ISSN: 2577-1655
2017-09-06
C. Theisen, K. Herzig, B. Murphy, L. Williams.  2017.  Risk-based attack surface approximation: how much data is enough? 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). :273-282.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code base. Making informed decisions on what code to review can improve a team's ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.