Biblio
This paper presents a novel efficient SAT-attack algorithm for logic encryption. The existing SAT-attack algorithm can decrypt almost all encrypted circuits proposed so far, however, there are cases that it takes a huge amount of CPU time. This is because the number of clauses being added during the decryption increases drastically in that case. To overcome that problem, a novel algorithm is developed, which considers the equivalence of clauses to be added. Experiments show that the proposed algorithm is much faster than the existing algorithm.
In this paper we present results of algebraic analysis of GOST⌖ algorithm in SageMath environment. Using the GOST⌖ as the example we explore basic stages of algebraic analysis of any symmetric block cipher based on Feistel network. We construct sets of boolean equations for five encryption rounds and determine the number of known text pairs for which the key can be found with the probability of 1. The algebraic analysis of five rounds of GOST⌖ allowed to find a 160-bit encryption key with the probability of 1 for five known text pairs within 797.21 s; the search for the solution took 24.66 s.