Visible to the public Biblio

Filters: Keyword is bare-metal analysis  [Clear All Filters]
2018-01-23
Guan, Le, Jia, Shijie, Chen, Bo, Zhang, Fengwei, Luo, Bo, Lin, Jingqiang, Liu, Peng, Xing, Xinyu, Xia, Luning.  2017.  Supporting Transparent Snapshot for Bare-metal Malware Analysis on Mobile Devices. Proceedings of the 33rd Annual Computer Security Applications Conference. :339–349.

The increasing growth of cybercrimes targeting mobile devices urges an efficient malware analysis platform. With the emergence of evasive malware, which is capable of detecting that it is being analyzed in virtualized environments, bare-metal analysis has become the definitive resort. Existing works mainly focus on extracting the malicious behaviors exposed during bare-metal analysis. However, after malware analysis, it is equally important to quickly restore the system to a clean state to examine the next sample. Unfortunately, state-of-the-art solutions on mobile platforms can only restore the disk, and require a time-consuming system reboot. In addition, all of the existing works require some in-guest components to assist the restoration. Therefore, a kernel-level malware is still able to detect the presence of the in-guest components. We propose Bolt, a transparent restoration mechanism for bare-metal analysis on mobile platform without rebooting. Bolt achieves a reboot-less restoration by simultaneously making a snapshot for both the physical memory and the disk. Memory snapshot is enabled by an isolated operating system (BoltOS) in the ARM TrustZone secure world, and disk snapshot is accomplished by a piece of customized firmware (BoltFTL) for flash-based block devices. Because both the BoltOS and the BoltFTL are isolated from the guest system, even kernel-level malware cannot interfere with the restoration. More importantly, Bolt does not require any modifications into the guest system. As such, Bolt is the first that simultaneously achieves efficiency, isolation, and stealthiness to recover from infection due to malware execution. We have implemented a Bolt prototype working with the Android OS. Experimental results show that Bolt can restore the guest system to a clean state in only 2.80 seconds.

2017-09-15
Vadrevu, Phani, Perdisci, Roberto.  2016.  MAXS: Scaling Malware Execution with Sequential Multi-Hypothesis Testing. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :771–782.

In an attempt to coerce useful information about the behavior of new malware families, threat analysts commonly force newly collected malicious software samples to run within a sandboxed environment. The main goal is to gather intelligence that can later be leveraged to detect and enumerate new malware infections within a network. Currently, most analysis environments "blindly" execute each newly collected malware sample for a predetermined amount of time (e.g., four to five minutes). However, a large majority of malware samples that are forced through sandbox execution are simply repackaged versions of previously seen (and already analyzed) malware. Consequently, a significant amount of time may be wasted in analyzing samples that do not generate new intelligence. In this paper, we propose MAXS, a novel probabilistic multi-hypothesis testing framework for scaling execution in malware analysis environments, including bare-metal execution environments. Our main goal is to automatically recognize whether a malware sample that is undergoing dynamic analysis has likely been seen before (e.g., in a "differently packed" form), and determine if we could therefore stop its execution early while avoiding loss of valuable malware intelligence (e.g., without missing DNS queries to never-before-seen malware command-and-control domains). We have tested our prototype implementation of MAXS over two large collections of malware execution traces obtained from two distinct production-level analysis environments. Our experimental results show that using MAXS we are able to reduce malware execution time by up to 50% in average, with less than 0.3% information loss. This roughly translates into the ability to double the capacity of malware sandbox environments, thus significantly optimizing the resources dedicated to malware execution and analysis. Our results are particularly important for bare-metal execution environments, in which it is not easy to leverage the economies of scale that characterize virtual-machine or emulation based malware sandboxes. For example, MAXS could be used to significantly cut the cost of bare-metal analysis environments by reducing the hardware resources needed to analyze a predetermined daily number of new malware samples.