Visible to the public Biblio

Filters: Keyword is convolutional neural network (CNN)  [Clear All Filters]
2023-07-21
R, Sowmiya, G, Sivakamasundari, V, Archana.  2022.  Facial Emotion Recognition using Deep Learning Approach. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :1064—1069.
Human facial emotion recognition pays a variety of applications in society. The basic idea of Facial Emotion Recognition is to map the different facial emotions to a variety of emotional states. Conventional Facial Emotion Recognition consists of two processes: extracting the features and feature selection. Nowadays, in deep learning algorithms, Convolutional Neural Networks are primarily used in Facial Emotion Recognition because of their hidden feature extraction from the images. Usually, the standard Convolutional Neural Network has simple learning algorithms with finite feature extraction layers for extracting information. The drawback of the earlier approach was that they validated only the frontal view of the photos even though the image was obtained from different angles. This research work uses a deep Convolutional Neural Network along with a DenseNet-169 as a backbone network for recognizing facial emotions. The emotion Recognition dataset was used to recognize the emotions with an accuracy of 96%.
2023-06-29
Sahib, Ihsan, AlAsady, Tawfiq Abd Alkhaliq.  2022.  Deep fake Image Detection based on Modified minimized Xception Net and DenseNet. 2022 5th International Conference on Engineering Technology and its Applications (IICETA). :355–360.

This paper deals with the problem of image forgery detection because of the problems it causes. Where The Fake im-ages can lead to social problems, for example, misleading the public opinion on political or religious personages, de-faming celebrities and people, and Presenting them in a law court as evidence, may Doing mislead the court. This work proposes a deep learning approach based on Deep CNN (Convolutional Neural Network) Architecture, to detect fake images. The network is based on a modified structure of Xception net, CNN based on depthwise separable convolution layers. After extracting the feature maps, pooling layers are used with dense connection with Xception output, to in-crease feature maps. Inspired by the idea of a densenet network. On the other hand, the work uses the YCbCr color system for images, which gave better Accuracy of %99.93, more than RGB, HSV, and Lab or other color systems.

ISSN: 2831-753X

2022-04-25
Sunil, Ajeet, Sheth, Manav Hiren, E, Shreyas, Mohana.  2021.  Usual and Unusual Human Activity Recognition in Video using Deep Learning and Artificial Intelligence for Security Applications. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–6.
The main objective of Human Activity Recognition (HAR) is to detect various activities in video frames. Video surveillance is an import application for various security reasons, therefore it is essential to classify activities as usual and unusual. This paper implements the deep learning model that has the ability to classify and localize the activities detected using a Single Shot Detector (SSD) algorithm with a bounding box, which is explicitly trained to detect usual and unusual activities for security surveillance applications. Further this model can be deployed in public places to improve safety and security of individuals. The SSD model is designed and trained using transfer learning approach. Performance evaluation metrics are visualised using Tensor Board tool. This paper further discusses the challenges in real-time implementation.
2022-01-10
Sallam, Youssef F., Ahmed, Hossam El-din H., Saleeb, Adel, El-Bahnasawy, Nirmeen A., El-Samie, Fathi E. Abd.  2021.  Implementation of Network Attack Detection Using Convolutional Neural Network. 2021 International Conference on Electronic Engineering (ICEEM). :1–6.
The Internet obviously has a major impact on the global economy and human life every day. This boundless use pushes the attack programmers to attack the data frameworks on the Internet. Web attacks influence the reliability of the Internet and its administrations. These attacks are classified as User-to-Root (U2R), Remote-to-Local (R2L), Denial-of-Service (DoS) and Probing (Probe). Subsequently, making sure about web framework security and protecting data are pivotal. The conventional layers of safeguards like antivirus scanners, firewalls and proxies, which are applied to treat the security weaknesses are insufficient. So, Intrusion Detection Systems (IDSs) are utilized to screen PC and data frameworks for security shortcomings. IDS adds more effectiveness in securing networks against attacks. This paper presents an IDS model based on Deep Learning (DL) with Convolutional Neural Network (CNN) hypothesis. The model has been evaluated on the NSLKDD dataset. It has been trained by Kddtrain+ and tested twice, once using kddtrain+ and the other using kddtest+. The achieved test accuracies are 99.7% and 98.43% with 0.002 and 0.02 wrong alert rates for the two test scenarios, respectively.
2021-11-30
Li, Gangqiang, Wu, Sissi Xiaoxiao, Zhang, Shengli, Li, Qiang.  2020.  Detect Insider Attacks Using CNN in Decentralized Optimization. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8758–8762.
This paper studies the security issue of a gossip-based distributed projected gradient (DPG) algorithm, when it is applied for solving a decentralized multi-agent optimization. It is known that the gossip-based DPG algorithm is vulnerable to insider attacks because each agent locally estimates its (sub)gradient without any supervision. This work leverages the convolutional neural network (CNN) to perform the detection and localization of the insider attackers. Compared to the previous work, CNN can learn appropriate decision functions from the original state information without preprocessing through artificially designed rules, thereby alleviating the dependence on complex pre-designed models. Simulation results demonstrate that the proposed CNN-based approach can effectively improve the performance of detecting and localizing malicious agents, as compared with the conventional pre-designed score-based model.
2021-10-12
Niazazari, Iman, Livani, Hanif.  2020.  Attack on Grid Event Cause Analysis: An Adversarial Machine Learning Approach. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
With the ever-increasing reliance on data for data-driven applications in power grids, such as event cause analysis, the authenticity of data streams has become crucially important. The data can be prone to adversarial stealthy attacks aiming to manipulate the data such that residual-based bad data detectors cannot detect them, and the perception of system operators or event classifiers changes about the actual event. This paper investigates the impact of adversarial attacks on convolutional neural network-based event cause analysis frameworks. We have successfully verified the ability of adversaries to maliciously misclassify events through stealthy data manipulations. The vulnerability assessment is studied with respect to the number of compromised measurements. Furthermore, a defense mechanism to robustify the performance of the event cause analysis is proposed. The effectiveness of adversarial attacks on changing the output of the framework is studied using the data generated by real-time digital simulator (RTDS) under different scenarios such as type of attacks and level of access to data.
2021-03-30
Elnour, M., Meskin, N., Khan, K. M..  2020.  Hybrid Attack Detection Framework for Industrial Control Systems using 1D-Convolutional Neural Network and Isolation Forest. 2020 IEEE Conference on Control Technology and Applications (CCTA). :877—884.

Industrial control systems (ICSs) are used in various infrastructures and industrial plants for realizing their control operation and ensuring their safety. Concerns about the cybersecurity of industrial control systems have raised due to the increased number of cyber-attack incidents on critical infrastructures in the light of the advancement in the cyber activity of ICSs. Nevertheless, the operation of the industrial control systems is bind to vital aspects in life, which are safety, economy, and security. This paper presents a semi-supervised, hybrid attack detection approach for industrial control systems by combining Isolation Forest and Convolutional Neural Network (CNN) models. The proposed framework is developed using the normal operational data, and it is composed of a feature extraction model implemented using a One-Dimensional Convolutional Neural Network (1D-CNN) and an isolation forest model for the detection. The two models are trained independently such that the feature extraction model aims to extract useful features from the continuous-time signals that are then used along with the binary actuator signals to train the isolation forest-based detection model. The proposed approach is applied to a down-scaled industrial control system, which is a water treatment plant known as the Secure Water Treatment (SWaT) testbed. The performance of the proposed method is compared with the other works using the same testbed, and it shows an improvement in terms of the detection capability.

2021-03-29
Makovetskii, A., Kober, V., Voronin, A., Zhernov, D..  2020.  Facial recognition and 3D non-rigid registration. 2020 International Conference on Information Technology and Nanotechnology (ITNT). :1—4.

One of the most efficient tool for human face recognition is neural networks. However, the result of recognition can be spoiled by facial expressions and other deviation from the canonical face representation. In this paper, we propose a resampling method of human faces represented by 3D point clouds. The method is based on a non-rigid Iterative Closest Point (ICP) algorithm. To improve the facial recognition performance, we use a combination of the proposed method and convolutional neural network (CNN). Computer simulation results are provided to illustrate the performance of the proposed method.

John, A., MC, A., Ajayan, A. S., Sanoop, S., Kumar, V. R..  2020.  Real-Time Facial Emotion Recognition System With Improved Preprocessing and Feature Extraction. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :1328—1333.

Human emotion recognition plays a vital role in interpersonal communication and human-machine interaction domain. Emotions are expressed through speech, hand gestures and by the movements of other body parts and through facial expression. Facial emotions are one of the most important factors in human communication that help us to understand, what the other person is trying to communicate. People understand only one-third of the message verbally, and two-third of it is through non-verbal means. There are many face emotion recognition (FER) systems present right now, but in real-life scenarios, they do not perform efficiently. Though there are many which claim to be a near-perfect system and to achieve the results in favourable and optimal conditions. The wide variety of expressions shown by people and the diversity in facial features of different people will not aid in the process of coming up with a system that is definite in nature. Hence developing a reliable system without any flaws showed by the existing systems is a challenging task. This paper aims to build an enhanced system that can analyse the exact facial expression of a user at that particular time and generate the corresponding emotion. Datasets like JAFFE and FER2013 were used for performance analysis. Pre-processing methods like facial landmark and HOG were incorporated into a convolutional neural network (CNN), and this has achieved good accuracy when compared with the already existing models.

Moti, Z., Hashemi, S., Jahromi, A. N..  2020.  A Deep Learning-based Malware Hunting Technique to Handle Imbalanced Data. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :48–53.
Nowadays, with the increasing use of computers and the Internet, more people are exposed to cyber-security dangers. According to antivirus companies, malware is one of the most common threats of using the Internet. Therefore, providing a practical solution is critical. Current methods use machine learning approaches to classify malware samples automatically. Despite the success of these approaches, the accuracy and efficiency of these techniques are still inadequate, especially for multiple class classification problems and imbalanced training data sets. To mitigate this problem, we use deep learning-based algorithms for classification and generation of new malware samples. Our model is based on the opcode sequences, which are given to the model without any pre-processing. Besides, we use a novel generative adversarial network to generate new opcode sequences for oversampling minority classes. Also, we propose the model that is a combination of Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) to classify malware samples. CNN is used to consider short-term dependency between features; while, LSTM is used to consider longer-term dependence. The experiment results show our method could classify malware to their corresponding family effectively. Our model achieves 98.99% validation accuracy.
2020-10-29
Lo, Wai Weng, Yang, Xu, Wang, Yapeng.  2019.  An Xception Convolutional Neural Network for Malware Classification with Transfer Learning. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—5.

In this work, we applied a deep Convolutional Neural Network (CNN) with Xception model to perform malware image classification. The Xception model is a recently developed special CNN architecture that is more powerful with less over- fitting problems than the current popular CNN models such as VGG16. However only a few use cases of the Xception model can be found in literature, and it has never been used to solve the malware classification problem. The performance of our approach was compared with other methods including KNN, SVM, VGG16 etc. The experiments on two datasets (Malimg and Microsoft Malware Dataset) demonstrated that the Xception model can achieve the highest training accuracy than all other approaches including the champion approach, and highest validation accuracy than all other approaches including VGG16 model which are using image-based malware classification (except the champion solution as this information was not provided). Additionally, we proposed a novel ensemble model to combine the predictions from .bytes files and .asm files, showing that a lower logloss can be achieved. Although the champion on the Microsoft Malware Dataset achieved a bit lower logloss, our approach does not require any features engineering, making it more effective to adapt to any future evolution in malware, and very much less time consuming than the champion's solution.

2020-10-19
Peng, Ruxiang, Li, Weishi, Yang, Tao, Huafeng, Kong.  2019.  An Internet of Vehicles Intrusion Detection System Based on a Convolutional Neural Network. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :1595–1599.
With the continuous development of the Internet of Vehicles, vehicles are no longer isolated nodes, but become a node in the car network. The open Internet will introduce traditional security issues into the Internet of Things. In order to ensure the safety of the networked cars, we hope to set up an intrusion detection system (IDS) on the vehicle terminal to detect and intercept network attacks. In our work, we designed an intrusion detection system for the Internet of Vehicles based on a convolutional neural network, which can run in a low-powered embedded vehicle terminal to monitor the data in the car network in real time. Moreover, for the case of packet encryption in some car networks, we have also designed a separate version for intrusion detection by analyzing the packet header. Experiments have shown that our system can guarantee high accuracy detection at low latency for attack traffic.
2020-10-05
Lee, Haanvid, Jung, Minju, Tani, Jun.  2018.  Recognition of Visually Perceived Compositional Human Actions by Multiple Spatio-Temporal Scales Recurrent Neural Networks. IEEE Transactions on Cognitive and Developmental Systems. 10:1058—1069.

We investigate a deep learning model for action recognition that simultaneously extracts spatio-temporal information from a raw RGB input data. The proposed multiple spatio-temporal scales recurrent neural network (MSTRNN) model is derived by combining multiple timescale recurrent dynamics with a conventional convolutional neural network model. The architecture of the proposed model imposes both spatial and temporal constraints simultaneously on its neural activities. The constraints vary, with multiple scales in different layers. As suggested by the principle of upward and downward causation, it is assumed that the network can develop a functional hierarchy using its constraints during training. To evaluate and observe the characteristics of the proposed model, we use three human action datasets consisting of different primitive actions and different compositionality levels. The performance capabilities of the MSTRNN model on these datasets are compared with those of other representative deep learning models used in the field. The results show that the MSTRNN outperforms baseline models while using fewer parameters. The characteristics of the proposed model are observed by analyzing its internal representation properties. The analysis clarifies how the spatio-temporal constraints of the MSTRNN model aid in how it extracts critical spatio-temporal information relevant to its given tasks.

2020-09-11
Azakami, Tomoka, Shibata, Chihiro, Uda, Ryuya, Kinoshita, Toshiyuki.  2019.  Creation of Adversarial Examples with Keeping High Visual Performance. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :52—56.
The accuracy of the image classification by the convolutional neural network is exceeding the ability of human being and contributes to various fields. However, the improvement of the image recognition technology gives a great blow to security system with an image such as CAPTCHA. In particular, since the character string CAPTCHA has already added distortion and noise in order not to be read by the computer, it becomes a problem that the human readability is lowered. Adversarial examples is a technique to produce an image letting an image classification by the machine learning be wrong intentionally. The best feature of this technique is that when human beings compare the original image with the adversarial examples, they cannot understand the difference on appearance. However, Adversarial examples that is created with conventional FGSM cannot completely misclassify strong nonlinear networks like CNN. Osadchy et al. have researched to apply this adversarial examples to CAPTCHA and attempted to let CNN misclassify them. However, they could not let CNN misclassify character images. In this research, we propose a method to apply FGSM to the character string CAPTCHAs and to let CNN misclassified them.
2018-12-03
Liu, Peng, Zhao, Siqi, Li, Songbin.  2017.  Facial Expression Recognition Based On Hierarchical Feature Learning. Proceedings of the 2017 2Nd International Conference on Communication and Information Systems. :309–313.

Facial expression recognition is a challenging problem in the field of computer vision. In this paper, we propose a deep learning approach that can learn the joint low-level and high-level features of human face to resolve this problem. Our deep neural networks utilize convolution and downsampling to extract the abstract and local features of human face, and reconstruct the raw input images to learn global features as supplementary information at the same time. We also add an adjustable weight in the networks when combining the two kinds of features for the final classification. The experimental results show that the proposed method can achieve good results, which has an average recognition accuracy of 93.65% on the test datasets.

2017-09-19
Yan, Jingwei, Zheng, Wenming, Cui, Zhen, Tang, Chuangao, Zhang, Tong, Zong, Yuan, Sun, Ning.  2016.  Multi-clue Fusion for Emotion Recognition in the Wild. Proceedings of the 18th ACM International Conference on Multimodal Interaction. :458–463.

In the past three years, Emotion Recognition in the Wild (EmotiW) Grand Challenge has drawn more and more attention due to its huge potential applications. In the fourth challenge, aimed at the task of video based emotion recognition, we propose a multi-clue emotion fusion (MCEF) framework by modeling human emotion from three mutually complementary sources, facial appearance texture, facial action, and audio. To extract high-level emotion features from sequential face images, we employ a CNN-RNN architecture, where face image from each frame is first fed into the fine-tuned VGG-Face network to extract face feature, and then the features of all frames are sequentially traversed in a bidirectional RNN so as to capture dynamic changes of facial textures. To attain more accurate facial actions, a facial landmark trajectory model is proposed to explicitly learn emotion variations of facial components. Further, audio signals are also modeled in a CNN framework by extracting low-level energy features from segmented audio clips and then stacking them as an image-like map. Finally, we fuse the results generated from three clues to boost the performance of emotion recognition. Our proposed MCEF achieves an overall accuracy of 56.66% with a large improvement of 16.19% with respect to the baseline.