Visible to the public Biblio

Filters: Keyword is True Positive  [Clear All Filters]
2022-05-20
Choi, Changhee, Shin, Sunguk, Shin, Chanho.  2021.  Performance evaluation method of cyber attack behaviour forecasting based on mitigation. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :13–15.
Recently, most of the processes are being computerized, due to the development of information and communication technology. In proportion to this, cyber-attacks are also increasing, and state-sponsored cyber-attacks are becoming a great threat to the country. These attacks are often composed of stages and proceed step-by-step, so for defense, it is necessary to predict the next action and perform appropriate mitigation. To this end, the paper proposes a mitigation-based performance evaluation method. We developed the new true positive which can have a value between 0 and 1 according to the mitigation. The experiment result and case studies show that the proposed method can effectively measure forecasting results under cyber security defense system.
2017-09-19
Hamid, Yasir, Sugumaran, M., Journaux, Ludovic.  2016.  Machine Learning Techniques for Intrusion Detection: A Comparative Analysis. Proceedings of the International Conference on Informatics and Analytics. :53:1–53:6.

With the growth of internet world has transformed into a global market with all monetary and business exercises being carried online. Being the most imperative resource of the developing scene, it is the vulnerable object and hence needs to be secured from the users with dangerous personality set. Since the Internet does not have focal surveillance component, assailants once in a while, utilizing varied and advancing hacking topologies discover a path to bypass framework's security and one such collection of assaults is Intrusion. An intrusion is a movement of breaking into the framework by compromising the security arrangements of the framework set up. The technique of looking at the system information for the conceivable intrusions is known intrusion detection. For the last two decades, automatic intrusion detection system has been an important exploration point. Till now researchers have developed Intrusion Detection Systems (IDS) with the capability of detecting attacks in several available environments; latest on the scene are Machine Learning approaches. Machine learning techniques are the set of evolving algorithms that learn with experience, have improved performance in the situations they have already encountered and also enjoy a broad range of applications in speech recognition, pattern detection, outlier analysis etc. There are a number of machine learning techniques developed for different applications and there is no universal technique that can work equally well on all datasets. In this work, we evaluate all the machine learning algorithms provided by Weka against the standard data set for intrusion detection i.e. KddCupp99. Different measurements contemplated are False Positive Rate, precision, ROC, True Positive Rate.