Visible to the public Biblio

Filters: Keyword is DGA  [Clear All Filters]
2021-09-21
Yan, Fan, Liu, Jia, Gu, Liang, Chen, Zelong.  2020.  A Semi-Supervised Learning Scheme to Detect Unknown DGA Domain Names Based on Graph Analysis. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1578–1583.
A large amount of malware families use the domain generation algorithms (DGA) to randomly generate a large amount of domain names. It is a good way to bypass conventional blacklists of domain names, because we cannot predict which of the randomly generated domain names are selected for command and control (C&C) communications. An effective approach for detecting known DGA families is to investigate the malware with reverse engineering to find the adopted generation algorithms. As reverse engineering cannot handle the variants of DGA families, some researches leverage supervised learning to find new variants. However, the explainability of supervised learning is low and cannot find previously unseen DGA families. In this paper, we propose a graph-based semi-supervised learning scheme to track the evolution of known DGA families and find previously unseen DGA families. With a domain relation graph, we can clearly figure out how new variants relate to known DGA domain names, which induces better explainability. We deployed the proposed scheme on real network scenarios and show that the proposed scheme can not only comprehensively and precisely find known DGA families, but also can find new DGA families which have not seen before.
2021-05-13
Ho, Tsung-Yu, Chen, Wei-An, Huang, Chiung-Ying.  2020.  The Burden of Artificial Intelligence on Internal Security Detection. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). :148—150.
Our research team have devoted to extract internal malicious behavior by monitoring the network traffic for many years. We applied the deep learning approach to recognize the malicious patterns within network, but this methodology may lead to more works to examine the results from AI models production. Hence, this paper addressed the scenario to consider the burden of AI, and proposed an idea for long-term reliable detection in the future work.
2020-09-11
Ashiq, Md. Ishtiaq, Bhowmick, Protick, Hossain, Md. Shohrab, Narman, Husnu S..  2019.  Domain Flux-based DGA Botnet Detection Using Feedforward Neural Network. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1—6.
Botnets have been a major area of concern in the field of cybersecurity. There have been a lot of research works for detection of botnets. However, everyday cybercriminals are coming up with new ideas to counter the well-known detection methods. One such popular method is domain flux-based botnets in which a large number of domain names are produced using domain generation algorithm. In this paper, we have proposed a robust way of detecting DGA-based botnets using few novel features covering both syntactic and semantic viewpoints. We have used Area under ROC curve as our performance metric since it provides comprehensive information about the performance of binary classifiers at various thresholds. Results show that our approach performs significantly better than the baseline approach. Our proposed method can help in detecting established DGA bots (equipped with extensive features) as well as prospective advanced DGA bots imitating real-world domain names.
2018-09-05
Chen, Yizheng, Nadji, Yacin, Kountouras, Athanasios, Monrose, Fabian, Perdisci, Roberto, Antonakakis, Manos, Vasiloglou, Nikolaos.  2017.  Practical Attacks Against Graph-based Clustering. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1125–1142.
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.
2017-09-19
Kumar, Vimal, Kumar, Satish, Gupta, Avadhesh Kumar.  2016.  Real-time Detection of Botnet Behavior in Cloud Using Domain Generation Algorithm. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :69:1–69:3.

In the last few years, the high acceptability of service computing delivered over the internet has exponentially created immense security challenges for the services providers. Cyber criminals are using advanced malware such as polymorphic botnets for participating in our everyday online activities and trying to access the desired information in terms of personal details, credit card numbers and banking credentials. Polymorphic botnet attack is one of the biggest attacks in the history of cybercrime and currently, millions of computers are infected by the botnet clients over the world. Botnet attack is an intelligent and highly coordinated distributed attack which consists of a large number of bots that generates big volumes of spamming e-mails and launching distributed denial of service (DDoS) attacks on the victim machines in a heterogeneous network environment. Therefore, it is necessary to detect the malicious bots and prevent their planned attacks in the cloud environment. A number of techniques have been developed for detecting the malicious bots in a network in the past literature. This paper recognize the ineffectiveness exhibited by the singnature based detection technique and networktraffic based detection such as NetFlow or traffic flow detection and Anomaly based detection. We proposed a real time malware detection methodology based on Domain Generation Algorithm. It increasesthe throughput in terms of early detection of malicious bots and high accuracy of identifying the suspicious behavior.