Visible to the public Biblio

Filters: Keyword is secure estimation  [Clear All Filters]
2020-03-09
Xiaoxin, LOU, Xiulan, SONG, Defeng, HE, Liming, MENG.  2019.  Secure estimation for intelligent connected vehicle systems against sensor attacks. 2019 Chinese Control Conference (CCC). :6658–6662.
Intelligent connected vehicle system tightly integrates computing, communication, and control strategy. It can increase the traffic throughput, minimize the risk of accidents and reduce the energy consumption. However, because of the openness of the vehicular ad hoc network, the system is vulnerable to cyber-attacks and may result in disastrous consequences. Hence, it is interesting in design of the connected vehicular systems to be resilient to the sensor attacks. The paper focuses on the estimation and control of the intelligent connected vehicle systems when the sensors or the wireless channels of the system are attacked by attackers. We give the upper bound of the corrupted sensors that can be corrected and design the state estimator to reconstruct the initial state by designing a closed-loop controller. Finally, we verify the algorithm for the connected vehicle system by some classical simulations.
2019-12-30
Zhang, Zhenyong, Wu, Junfeng, Yau, David, Cheng, Peng, Chen, Jiming.  2018.  Secure Kalman Filter State Estimation by Partially Homomorphic Encryption. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :345–346.
Recently, the security of state estimation has been attracting significant research attention due to the need for trustworthy situation awareness in emerging (e.g., industrial) cyber-physical systems. In this paper, we investigate secure estimation based on Kalman filtering (SEKF) using partially homomorphically encrypted data. The encryption will enhance the confidentiality not only of data transmitted in the communication network, but also key system information required by the estimator. We use a multiplicative homomorphic encryption scheme, but with a modified decryption algorithm. SEKF is able to conceal comprehensive information (i.e., system parameters, measurements, and state estimates) aggregated at the sink node of the estimator, while retaining the effectiveness of normal Kalman filtering. Therefore, even if an attacker has gained unauthorized access to the estimator and associated communication channels, he will not be able to obtain sufficient knowledge of the system state to guide the attack, e.g., ensure its stealthiness. We present an implementation structure of the SEKF to reduce the communication overhead compared with traditional secure multiparty computation (SMC) methods. Finally, we demonstrate the effectiveness of the SEKF on an IEEE 9-bus power system.
2018-11-19
Samudrala, A. N., Blum, R. S..  2017.  Asymptotic Analysis of a New Low Complexity Encryption Approach for the Internet of Things, Smart Cities and Smart Grid. 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC). :200–204.

Parameter estimation in wireless sensor networks (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a non-binary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R $ε$ 1, 2, 3,..., encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.

2015-04-30
Yilin Mo, Sinopoli, B..  2015.  Secure Estimation in the Presence of Integrity Attacks. Automatic Control, IEEE Transactions on. 60:1145-1151.

We consider the estimation of a scalar state based on m measurements that can be potentially manipulated by an adversary. The attacker is assumed to have full knowledge about the true value of the state to be estimated and about the value of all the measurements. However, the attacker has limited resources and can only manipulate up to l of the m measurements. The problem is formulated as a minimax optimization, where one seeks to construct an optimal estimator that minimizes the “worst-case” expected cost against all possible manipulations by the attacker. We show that if the attacker can manipulate at least half the measurements (l ≥ m/2), then the optimal worst-case estimator should ignore all measurements and be based solely on the a-priori information. We provide the explicit form of the optimal estimator when the attacker can manipulate less than half the measurements (l <; m/2), which is based on (m2l) local estimators. We further prove that such an estimator can be reduced into simpler forms for two special cases, i.e., either the estimator is symmetric and monotone or m = 2l + 1. Finally we apply the proposed methodology in the case of Gaussian measurements.