Visible to the public Biblio

Filters: Keyword is application analysis  [Clear All Filters]
2022-06-09
Jung, Wonkyung, Lee, Eojin, Kim, Sangpyo, Kim, Namhoon, Lee, Keewoo, Min, Chohong, Cheon, Jung Hee, Ahn, Jung Ho.  2021.  Accelerating Fully Homomorphic Encryption Through Microarchitecture-Aware Analysis and Optimization. 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). :237–239.
Homomorphic Encryption (HE) [11] draws significant attention as a privacy-preserving way for cloud computing because it allows computation on encrypted messages called ciphertexts. Among numerous FHE schemes [2]–[4], [8], [9], HE for Arithmetic of Approximate Numbers (HEAAN [3]), which is also known as CKKS (Cheon-Kim-Kim-Song), is rapidly gaining popularity [10] as it supports computation on real numbers. A critical shortcoming of HE is the high computational complexity of ciphertext arithmetic, especially, HE multiplication (HE Mul). For example, the execution time for computation on encrypted data (ciphertext) increases from 100s to 10,000s of times compared to that on native, unen-crypted messages. However, a large body of HE acceleration studies, including ones exploiting GPUs and FPGAs, lack a rigorous analysis of computational complexity and data access patterns of HE Mul with large parameter sets on CPUs, the most popular computing platform.
2020-07-30
Bays, Jason, Karabiyik, Umit.  2019.  Forensic Analysis of Third Party Location Applications in Android and iOS. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1—6.
Location sharing applications are becoming increasingly common. These applications allow users to share their own locations and view contacts’ current locations on a map. Location applications are commonly used by friends and family members to view Global Positioning System (GPS) location of an individual, but valuable forensic evidence may exist in this data when stored locally on smartphones. This paper aims to discover forensic artifacts from two popular third-party location sharing applications on iOS and Android devices. Industry standard mobile forensic suites are utilized to discover if any locally stored data could be used to assist investigations reliant on knowing the past location of a suspect. Security issues raised regarding the artifacts found during our analysis is also discussed.
2018-05-09
Witt, M., Jansen, C., Krefting, D., Streit, A..  2017.  Fine-Grained Supervision and Restriction of Biomedical Applications in Linux Containers. 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :813–822.

Applications for data analysis of biomedical data are complex programs and often consist of multiple components. Re-usage of existing solutions from external code repositories or program libraries is common in algorithm development. To ease reproducibility as well as transfer of algorithms and required components into distributed infrastructures Linux containers are increasingly used in those environments, that are at least partly connected to the internet. However concerns about the untrusted application remain and are of high interest when medical data is processed. Additionally, the portability of the containers needs to be ensured by using only security technologies, that do not require additional kernel modules. In this paper we describe measures and a solution to secure the execution of an example biomedical application for normalization of multidimensional biosignal recordings. This application, the required runtime environment and the security mechanisms are installed in a Docker-based container. A fine-grained restricted environment (sandbox) for the execution of the application and the prevention of unwanted behaviour is created inside the container. The sandbox is based on the filtering of system calls, as they are required to interact with the operating system to access potentially restricted resources e.g. the filesystem or network. Due to the low-level character of system calls, the creation of an adequate rule set for the sandbox is challenging. Therefore the presented solution includes a monitoring component to collect required data for defining the rules for the application sandbox. Performance evaluation of the application execution shows no significant impact of the resulting sandbox, while detailed monitoring may increase runtime up to over 420%.

2017-09-19
Tromer, Eran, Schuster, Roei.  2016.  DroidDisintegrator: Intra-Application Information Flow Control in Android Apps. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :401–412.

In mobile platforms and their app markets, controlling app permissions and preventing abuse of private information are crucial challenges. Information Flow Control (IFC) is a powerful approach for formalizing and answering user concerns such as: "Does this app send my geolocation to the Internet?" Yet despite intensive research efforts, IFC has not been widely adopted in mainstream programming practice. Abstract We observe that the typical structure of Android apps offers an opportunity for a novel and effective application of IFC. In Android, an app consists of a collection of a few dozen "components", each in charge of some high-level functionality. Most components do not require access to most resources. These components are a natural and effective granularity at which to apply IFC (as opposed to the typical process-level or language-level granularity). By assigning different permission labels to each component, and limiting information flow between components, it is possible to express and enforce IFC constraints. Yet nuances of the Android platform, such as its multitude of discretionary (and somewhat arcane) communication channels, raise challenges in defining and enforcing component boundaries. Abstract We build a system, DroidDisintegrator, which demonstrates the viability of component-level IFC for expressing and controlling app behavior. DroidDisintegrator uses dynamic analysis to generate IFC policies for Android apps, repackages apps to embed these policies, and enforces the policies at runtime. We evaluate DroidDisintegrator on dozens of apps.