Visible to the public Biblio

Filters: Keyword is effective capacity  [Clear All Filters]
2021-01-20
Aman, W., Haider, Z., Shah, S. W. H., Rahman, M. M. Ur, Dobre, O. A..  2020.  On the Effective Capacity of an Underwater Acoustic Channel under Impersonation Attack. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

This paper investigates the impact of authentication on effective capacity (EC) of an underwater acoustic (UWA) channel. Specifically, the UWA channel is under impersonation attack by a malicious node (Eve) present in the close vicinity of the legitimate node pair (Alice and Bob); Eve tries to inject its malicious data into the system by making Bob believe that she is indeed Alice. To thwart the impersonation attack by Eve, Bob utilizes the distance of the transmit node as the feature/fingerprint to carry out feature-based authentication at the physical layer. Due to authentication at Bob, due to lack of channel knowledge at the transmit node (Alice or Eve), and due to the threshold-based decoding error model, the relevant dynamics of the considered system could be modelled by a Markov chain (MC). Thus, we compute the state-transition probabilities of the MC, and the moment generating function for the service process corresponding to each state. This enables us to derive a closed-form expression of the EC in terms of authentication parameters. Furthermore, we compute the optimal transmission rate (at Alice) through gradient-descent (GD) technique and artificial neural network (ANN) method. Simulation results show that the EC decreases under severe authentication constraints (i.e., more false alarms and more transmissions by Eve). Simulation results also reveal that the (optimal transmission rate) performance of the ANN technique is quite close to that of the GTJ method.

2017-09-19
Roumeliotis, Anargyros J., Panagopoulos, Athanasios D..  2016.  QoS-Based Allocation Cooperative Mechanism for Spectrum Leasing in Overlay Cognitive Radio Networks. Proceedings of the 20th Pan-Hellenic Conference on Informatics. :49:1–49:6.

The cooperative spectrum leasing process between the primary user (PU) and the secondary user (SU) in a cognitive radio network under the overlay approach and the decode and forward (DF) cooperative protocol is studied. Considering the Quality of Service (QoS) provisioning of both users, which participate in a three-phase leasing process, we investigate the maximization of PU's effective capacity subject to an average energy constraint for the SU under a heuristic power and time allocation mechanism. The aforementioned proposed scheme treats with the basic concepts of the convex optimization theory and outperforms a baseline allocation mechanism which is proven by the simulations. Finally, important remarks for the PU's and the SU's performance are extracted for different system parameters.