Biblio
Software container solutions have revolutionized application development approaches by enabling lightweight platform abstractions within the so-called "containers." Several solutions are being actively developed in attempts to bring the benefits of containers to high-performance computing systems with their stringent security demands on the one hand and fundamental resource sharing requirements on the other. In this paper, we discuss the benefits and short-comings of such solutions when deployed on real HPC systems and applied to production scientific applications. We highlight use cases that are either enabled by or significantly benefit from such solutions. We discuss the efforts by HPC system administrators and support staff to support users of these type of workloads on HPC systems not initially designed with these workloads in mind focusing on NCSA's Blue Waters system.
Science is conducted collaboratively, often requiring knowledge sharing about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs) or Digital Object Identifiers (DOIs). An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. In this paper, we present the sciunit, a reusable research object in which aggregated content is recomputable. We describe a Git-like client that efficiently creates, stores, and repeats sciunits. We show through analysis that sciunits repeat computational experiments with minimal storage and processing overhead. Finally, we provide an overview of sharing and reproducible cyberinfrastructure based on sciunits gaining adoption in the domain of geosciences.
Performance analysis of newly designed solutions is essential for efficient Internet of Things and Wireless Sensor Network (WSN) deployments. Simulation and experimental evaluation practices are vital steps for the development process of protocols and applications for wireless technologies. Nowadays, the new solutions can be tested at a very large scale over both simulators and testbeds. In this paper, we first discuss the importance of repeatable experimental setups for reproducible performance evaluation results. To this aim, we present FIT IoT-LAB, a very large-scale and experimental testbed, i.e., consists of 2769 low-power wireless devices and 127 mobile robots. We then demonstrate through a number of experiments conducted on FIT IoT-LAB testbed, how to conduct meaningful experiments under real-world conditions. Finally, we discuss to what extent results obtained from experiments could be considered as scientific, i.e., reproducible by the community.