Visible to the public Biblio

Filters: Keyword is visible light communication  [Clear All Filters]
2022-12-20
Zahiri-Rad, Saman, Salem, Ziad, Weiss, Andreas P., Leitgeb, Erich.  2022.  An Optimal Solution for a Human Wrist Rotation Recognition System by Utilizing Visible Light Communication. 2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom). :1–8.
Wrist-worn devices enable access to essential information and they are suitable for a wide range of applications, such as gesture and activity recognition. Wrist-worn devices require appropriate technologies when used in sensitive areas, overcoming vulnerabilities in regard to security and privacy. In this work, we propose an approach to recognize wrist rotation by utilizing Visible Light Communication (VLC) that is enabled by low-cost LEDs in an indoor environment. In this regard, we address the channel model of a VLC communicating wristband (VLCcw) in terms of the following factors. The directionality and the spectral composition of the light and the corresponding spectral sensitivity and the directional characteristics of the utilized photodiode (PD). We verify our VLCcw from the simulation environment by a small-scale experimental setup. Then, we analyze the system when white and RGBW LEDs are used. In addition, we optimized the VLCcw system by adding more receivers for the purpose of reducing the number of LEDs on VLCcw. Our results show that the proposed approach generates a feasible real-world simulation environment.
Kawade, Alisa, Chujo, Wataru, Kobayashi, Kentaro.  2022.  Smartphone screen to camera uplink communication with enhanced physical layer security by low-luminance space division multiplexing. 2022 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). :176–180.
To achieve secure uplink communication from smartphones’ screen to a telephoto camera at a long distance of 3.5 meters, we demonstrate that low-luminance space division multiplexing screen is effective in enhancement of the physical layer security. First, a numerical model shows that the spatial inter-symbol interference caused by space division multiplexing prevents eavesdropping from a wide angle by the camera. Second, wide-angle characteristics of the symbol error rate and the pixel value distribution are measured to verify the numerical analysis. We experimentally evaluate the difference in the performances from a wide angle depending on the screen luminance and color. We also evaluate the performances at a long distance in front of the screen and a short distance from a wider angle.
Albayrak, Cenk, Arslan, Hüseyin, Türk, Kadir.  2022.  Physical Layer Security for Visible Light Communication in the Presence of ISI and NLoS. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :469–474.
Visible light communication (VLC) is an important alternative and/or complementary technology for next generation indoor wireless broadband communication systems. In order to ensure data security for VLC in public areas, many studies in literature consider physical layer security (PLS). These studies generally neglect the reflections in the VLC channel and assume no inter symbol interference (ISI). However, increasing the data transmission rate causes ISI. In addition, even if the power of the reflections is small compared to the line of sight (LoS) components, it can affect the secrecy rate in a typical indoor VLC system. In this study, we investigate the effects of ISI and reflected channel components on secrecy rate in multiple-input single-output (MISO) VLC scenario utilized null-steering (NS) and artificial noise (AN) PLS techniques.
ISSN: 2694-2941
Hasan, Syed Rakib, Chowdhury, Mostafa Zaman, Saiam, Md..  2022.  A New Quantum Visible Light Communication for Future Wireless Network Systems. 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). :1–4.
In the near future, the high data rate challenge would not be possible by using the radio frequency (RF) only. As the user will increase, the network traffic will increase proportionally. Visible light communication (VLC) is a good solution to support huge number of indoor users. VLC has high data rate over RF communication. The way internet users are increasing, we have to think over VLC technology. Not only the data rate is a concern but also its security, cost, and reliability have to be considered for a good communication network. Quantum technology makes a great impact on communication and computing in both areas. Quantum communication technology has the ability to support better channel capacity, higher security, and lower latency. This paper combines the quantum technology over the existing VLC and compares the performance between quantum visible light communication performance (QVLC) over the existing VLC system. Research findings clearly show that the performance of QVLC is better than the existing VLC system.
Kabir, Alamgir, Ahammed, Md. Tabil, Das, Chinmoy, Kaium, Mehedi Hasan, Zardar, Md. Abu, Prathibha, Soma.  2022.  Light Fidelity (Li-Fi) based Indoor Communication System. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–5.
Wireless-fidelity (Wi-Fi) and Bluetooth are examples of modern wireless communication technologies that employ radio waves as the primary channel for data transmission. but it ought to find alternatives over the limitation and interference in the radio frequency (RF) band. For viable alternatives, visible light communication (VLC) technology comes to play as Light Fidelity (Li-Fi) which uses visible light as a channel for delivering very high-speed communication in a Wi-Fi way. In terms of availability, bandwidth, security and efficiency, Li-Fi is superior than Wi-Fi. In this paper, we present a Li-Fi-based indoor communication system. prototype model has been proposed for single user scenario using visible light portion of electromagnetic spectrum. This system has been designed for audio data communication in between the users in transmitter and receiver sections. LED and photoresistor have been used as optical source and receiver respectively. The electro-acoustic transducer provides the required conversion of electrical-optical signal in both ways. This system might overcome problems like radio-frequency bandwidth scarcity However, its major problem is that it only works when it is pointed directly at the target.
2022-05-10
Xu, Zheng, Chen, Ming, Chen, Mingzhe, Yang, Zhaohui, Cang, Yihan, Poor, H. Vincent.  2021.  Physical Layer Security Optimization for MIMO Enabled Visible Light Communication Networks. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
This paper investigates the optimization of physical layer security in multiple-input multiple-output (MIMO) enabled visible light communication (VLC) networks. In the considered model, one transmitter equipped with light-emitting diodes (LEDs) intends to send confidential messages to legitimate users while one eavesdropper attempts to eavesdrop on the communication between the transmitter and legitimate users. This security problem is formulated as an optimization problem whose goal is to minimize the sum mean-square-error (MSE) of all legitimate users while meeting the MSE requirement of the eavesdropper thus ensuring the security. To solve this problem, the original optimization problem is first transformed to a convex problem using successive convex approximation. An iterative algorithm with low complexity is proposed to solve this optimization problem. Simulation results show that the proposed algorithm can reduce the sum MSE of legitimate users by up to 40% compared to a conventional zero forcing scheme.
Qian, Lei, Chi, Xuefen, Zhao, Linlin, Chaaban, Anas.  2021.  Secure Visible Light Communications via Intelligent Reflecting Surfaces. ICC 2021 - IEEE International Conference on Communications. :1–6.
Intelligent reflecting surfaces (IRS) can improve the physical layer security (PLS) by providing a controllable wireless environment. In this paper, we propose a novel PLS technique with the help of IRS implemented by an intelligent mirror array for the visible light communication (VLC) system. First, for the IRS aided VLC system containing an access point (AP), a legitimate user and an eavesdropper, the IRS channel gain and a lower bound of the achievable secrecy rate are derived. Further, to enhance the IRS channel gain of the legitimate user while restricting the IRS channel gain of the eavesdropper, we formulate an achievable secrecy rate maximization problem for the proposed IRS-aided PLS technique to find the optimal orientations of mirrors. Since the sensitivity of mirrors’ orientations on the IRS channel gain makes the optimization problem hard to solve, we transform the original problem into a reflected spot position optimization problem and solve it by a particle swarm optimization (PSO) algorithm. Our simulation results show that secrecy performance can be significantly improved by adding an IRS in a VLC system.
Su, Nuğman, Panayirci, Erdal, Koca, Mutlu, Haas, Harald.  2021.  Transmit Precoding for Physical Layer Security of MIMO-NOMA-Based Visible Light Communications. 2021 17th International Symposium on Wireless Communication Systems (ISWCS). :1–6.
We consider the physical layer security (PLS) of non-orthogonal multiple access (NOMA) enabled multiple-input multiple-output (MIMO) visible light communication systems in the presence of a passive eavesdropper (Eve). In order to disrupt the decoding process at Eve, we propose a novel precoding scheme reinforced with random constellation coding. Multiple legitimate users (Bobs) will be served simultaneously using NOMA. For the proposed precoder design, we exploit the slow-fading characteristics of the visible light channel so that the transmitted symbols are successfully decoded at Bob, while Eve suffers from very high bit error ratios (BERs) due to precoding-induced jamming. Via computer simulations, we show that Bob can successfully decode their own information in various user configurations and receiver diversities. It is also shown that the BER at Eve's side is increased to the 0.5-level for similar and the asymmetrical positioning of Bob with respect to the transmitter, thus PLS is ensured by the proposed preceding technique.
Ben, Yanglin, Chen, Ming, Cao, Binghao, Yang, Zhaohui, Li, Zhiyang, Cang, Yihan, Xu, Zheng.  2021.  On Secrecy Sum-Rate of Artificial-Noise-Aided Multi-user Visible Light Communication Systems. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
Recently, the physical layer security (PLS) is becoming an important research area for visible light communication (VLC) systems. In this paper, the secrecy rate performance is investigated for an indoor multi-user visible light communication (VLC) system using artificial noise (AN). In the considered model, all users simultaneously communicate with the legitimate receiver under wiretap channels. The legitimate receiver uses the minimum mean squared error (MMSE) equalizer to detect the received signals. Both lower bound and upper bound of the secrecy rate are obtained for the case that users' signals are uniformly distributed. Simulation results verify the theoretical findings and show the system secrecy rate performance for various positions of illegal eavesdropper.
priyadharshini, C Subha, Rajeswari, A, Sharmila, P, Gayathri, M, Randhisha, K, Yazhini, M C.  2021.  Design of Visible Light Communication System Using Ask Modulation. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :894–899.
A Visible Light Communication (VLC) is a fast growing technology became ubiquitous in the Optical wireless communication domain. It has the benefits of high security, high bandwidth, less power consumption, free from Electro Magnetic radiation hazards. VLC can help to address the looming spectrum crunch problem with secure communication in an unlimited spectrum. VLC provides extensive wireless connectivity with larger data densities than Wi-Fi along with added security features that annihilate unwanted external network invasion. The problem such as energy consumption and infrastructure complexity has been reduced by integrating the illumination and data services. The objective is to provide fast data communication with uninterrupted network connectivity and high accuracy to the user. In this paper, a proposed visible light communication system for transmitting text information using amplitude shift keying modulation (ASK) has been presented. Testing of transmitter and receiver block based on frequency, power and distance has been analyzed. The results show that the receiver is capable of receiving input data with minimum length under direct communication with the transmitter.
Shakil Sejan, Mohammad Abrar, Chung, Wan-Young.  2021.  Security Aware Indoor Visible Light Communication. 2021 IEEE Photonics Conference (IPC). :1–2.
This paper represents the experimental implementation of an encryption-based visible light communication system for indoor communication over 14m, two single LED transmitters as the data source, and four receivers considered as data receivers for performance evaluation.
2022-04-19
Gürcüo\u glu, O\u guz, Erdem, Mehmet Can, Çirkino\u glu, H. Ozan, Ferhanoglu, Onur, Kurt, Güne\c s Karabulut, Panayırcı, Erdal.  2021.  Improved Physical Layer Security in Visible Light Communications by Using Focused Light Emitters. 2021 29th Signal Processing and Communications Applications Conference (SIU). :1–4.

A conventional visible light communication system consists of a transmitter, a jammer that includes a few light emitting diodes, a legal listener and an eavesdropper. In this work, a similar system is designed with a collimating lens in order to create an extra layer of practical physical security measure. The use of a collimating lens makes it available to spatially limiting data transmission to an area under the lensed transmitter. Also focused data transmission through the optical lens, increases the secrecy rate. To investigate the applicability of the proposed design we designed a sample experimental setup using USRP and implemented in a laboratory environment. In the proposed set up, the receiver is in a fixed position. However, it is possible to implement an easy, practical and cheap hardware solution with respect to a beamforming type VLC that uses directional beam forming method to establish transmission to a dynamic target. In addition, it is achievable to control the size of the area where a receiver can access data by manipulating the distance between the optical lens and transmitter.

2021-05-18
Cho, Sunghwan, Chen, Gaojie, Coon, Justin P..  2020.  Enhancing Security in VLC Systems Through Beamforming. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
This paper proposes a novel zero-forcing (ZF) beamforming strategy that can simultaneously cope with active and passive eavesdroppers (EDs) in visible light communication systems. A related optimization problem is formulated to maximize the signal-to-noise ratio (SNR) of the legitimate user (UE) while suppressing the SNR of active ED to zero and constraining the average SNR of passive EDs. The proposed beamforming directs the transmission along a particular eigenmode related to the null space of the active ED channel and the intensity of the passive ED point process. An inverse free preconditioned Krylov subspace projection method is used to find the eigenmode. The numerical results show that the proposed ZF beamforming scheme yields better performance relative to a traditional ZF beamforming scheme in the sense of increasing the SNR of the UE and reducing the secrecy outage probability.
Sun, Yu, Zhao, Xiang.  2020.  On the Secrecy Performance of Random Mobile User in Visible Light Communication Systems. 2020 12th International Conference on Communication Software and Networks (ICCSN). :172–177.
For most of the current research on physical-layer security in indoor visible light communication (VLC) systems, a static communication environment was mainly considered, where secure communication about static users was investigated. However, much secure problems remain to be settled about mobile users. To improve the secrecy performance of mobile users, a two-dimensional circular optical atto-cell with security protected zone is considered. The proposed VLC systems include a LED transmitter Alice, a mobile user Bob and a passive eavesdropper Eve. A typical random waypoint model (RWP) being assumed, the secrecy outage probability (SOP) and secrecy throughput (ST) have been investigated for mobile users in VLC systems. The theoretical analysis results have been verified through Monte Carlo simulations. The simulation results show that the secrecy performance of mobile users in VLC can be improved by enlarging the radius of protected zone, and it also depends on the target secrecy rate and the LEDs' configuration.
Alresheedi, Mohammed T..  2020.  Improving the Confidentiality of VLC Channels: Physical-Layer Security Approaches. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1–5.
Visible light communication (VLC) is considered as an emerging system for wireless indoor multimedia communications. As any wireless communication system, its channels are open and reachable to both licensed and unlicensed users owing to the broadcast character of visible-light propagation in public areas or multiple-user scenarios. In this work, we consider the physical-layer security approaches for VLC to mitigate this limitation. The physical-layer security approaches can be divided into two categories: keyless security and key-based security approaches. In the last category, recently, the authors introduced physical-layer key-generation approaches for optical orthogonal frequency division multiplexing (OFDM) systems. In these approaches, the cyclic prefix (CP) samples are exploited for key generation. In this paper, we study the effect of the length of key space and order of modulation on the security level, BER performance, and key-disagreement-rate (KDR) of the introduced key-based security approaches. From the results, our approaches are more efficient in higher order of modulation as the KDR decreases with the increase of order of modulation.
Liu, Xiaodong, Chen, Zezong, Wang, Yuhao, Zhou, Fuhui, Ma, Shuai, Hu, Rose Qingyang.  2020.  Secure Beamforming Designs in MISO Visible Light Communication Networks with SLIPT. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Visible light communication (VLC) is a promising technique in the fifth and beyond wireless communication networks. In this paper, a secure multiple-input single-output VLC network is studied, where simultaneous lightwave information and power transfer (SLIPT) is exploited to support energy-limited devices taking into account a practical non-linear energy harvesting model. Specifically, the optimal beamforming design problems for minimizing transmit power and maximizing the minimum secrecy rate are studied under the imperfect channel state information (CSI). S-Procedure and a bisection search is applied to tackle challenging non-convex problems and to obtain efficient resource allocation algorithm. It is proved that optimal beamforming schemes can be obtained. It is found that there is a non-trivial trade-off between the average harvested power and the minimum secrecy rate. Moreover, we show that the quality of CSI has a significant impact on achievable performance.
Chu, Wen-Yi, Yu, Ting-Guang, Lin, Yu-Kai, Lee, Shao-Chuan, Hsiao, Hsu-Chun.  2020.  On Using Camera-based Visible Light Communication for Security Protocols. 2020 IEEE Security and Privacy Workshops (SPW). :110–117.
In security protocol design, Visible Light Communication (VLC) has often been abstracted as an ideal channel that is resilient to eavesdropping, manipulation, and jamming. Camera Communication (CamCom), a subcategory of VLC, further strengthens the level of security by providing a visually verifiable association between the transmitter and the extracted information. However, the ideal security guarantees of visible light channels may not hold in practice due to limitations and tradeoffs introduced by hardware, software, configuration, environment, etc. This paper presents our experience and lessons learned from implementing CamCom for security protocols. We highlight CamCom's security-enhancing properties and security applications that it enables. Backed by real implementation and experiments, we also systematize the practical considerations of CamCom-based security protocols.
Mir, Ayesha Waqar, Maqbool, Khawaja Qasim.  2020.  Robust Visible Light Communication in Intelligent Transportation System. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :387–391.
Wireless communication in the field of radio frequency (RF) have modernized our society. People experience persistent connection and high-speed data through wireless technologies like Wi-Fi and LTE while browsing the internet. This causes congestion to network; users make it difficult for everyone to access the internet or to communicate reliably on time. The major issues of RF spectrum are intrusion, high latency and it requires an individual transmitter receiver setup in order to function. Dr. Herald Hass came up with an idea of `data through illumination'. Surmounting the drawbacks of RF spectrum, visible light communication (VLC) is more favored technique. In intelligent transportation system (ITS), this evolving technology of VLC has a strong hold in order to connect vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) links wirelessly. Indoor VLC applications have been studied deeply while the field of vehicular VLC (V-VLC) networking is relatively a less researched domain because it has greater level of intrusion and additive ambient light noise is higher in outdoor VLC. Other factors due to which the implementation of VLC faces a lot of hurdles are mostly related to environment such as dust, haze, snow, sunlight, rain, fog, smog and atmospheric disturbances. In this paper, we executed a thorough channel modelling in order to study the effects of clear weather, fog, snow and rain quantitatively with respect to different wavelengths in consideration for an ITS. This makes ITS more robust in nature. The parameters under consideration will be signal-to-noise ratio (SNR), bit error rate (BER) and optical power received (OPR) for different LED wavelengths.
Shen, Chao.  2020.  Laser-based high bit-rate visible light communications and underwater optical wireless network. 2020 Photonics North (PN). :1–1.
This talk presents an overview of the latest visible light communication (VLC) and underwater wireless optical communication (UWOC) research and development from the device to the system level. The utilization of laser-based devices and systems for LiFi and underwater Internet of Things (IoT) has been discussed.
2020-07-13
Lee, Yong Up, Kang, Kyeong-Yoon, Choi, Ginkyu.  2019.  Secure Visible Light Encryption Communication Technique for Smart Home Service. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0827–0831.
For the security enhancement of the conventional visible light (VL) communication which allows the easy intrusion by adjacent adversary due to visible signal characteristic, the VL communication technique based on the asymmetric Rivest-Shamir-Adleman (RSA) encryption method is proposed for smart indoor service in this paper, and the optimal key length of the RSA encryption process for secure VL communication technique is investigated, and also the error performance dependent on the various asymmetric encryption key is analyzed for the performance evaluation of the proposed technique. Then we could see that the VL communication technique based on the RSA encryption gives the similar RMSE performance independent of the length of the public or private key and provides the better error performance as the signal to noise ratio (SNR) increases.
Ge, Hong, Dai, Jianxin, Huang, Bo, Wang, Jin-Yuan.  2019.  Secrecy Rate Analysis for Visible Light Communications Using Spatial Modulation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1241–1248.
This paper mainly investigates the physical layer security for visible light communication (VLC) based on spatial modulation (SM). The indoor VLC system includes multiple transmitters, a legitimate receiver and an eavesdropper. In the system, we consider two constraints of the input signal: non-negative and dimmable average optical intensity constraints. According to the principle of information theory and the spatial modulation scheme of uniform selection (US), the upper and the lower bounds on the secrecy rate for SM based VLC are derived, respectively. Numerical results show that the performance gap between the upper and lower bounds of the secrecy rate is small and relatively close, which indicates that the derived secrecy rate bounds can be used to evaluate the system performance. Moreover, when the number of transmitters is set to be one, the spatial modulation disappears, and the secrecy rate bounds in this paper are consistent with the existing results. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme is proposed for selecting the active transmitter. Numerical result indicates that the CAS scheme has better performance than the US scheme.
Almohanna, S., Alogayyel, M. S., Ajaji, A. A., Alkhdrawi, H. A., Alleli, M. A., Tareq, Q., Mukhtar, Sani, Mohammed Khan, Z. M..  2019.  Visible-NIR Laser Based Bi-directional Indoor Optical Wireless Communication. 2019 IEEE 10th GCC Conference Exhibition (GCC). :1–4.
We propose and demonstrate an indoor optical bi-directional communication system employing near-infrared (NIR) and visible light as carriers. Such a communication technology is attractive wherein red color could be deployed for down streaming purpose via, for instance, LiFi (light fidelity) system, and NIR color for up streaming purpose. This system concept is implemented over a simultaneous bidirectional audio signal transmission and reception over 0.6m indoor wireless channel. Besides, designing the transceiver circuits from off the shelf components, frequency scrambling encryption and decryption technique is also integrated in the system for security purpose. The communication system is optically characterized in terms of line-of-sight laser misalignment and communication distance.
Tian, Dinghui, Zhang, Wensheng, Sun, Jian, Wang, Cheng-Xiang.  2019.  Physical-Layer Security of Visible Light Communications with Jamming. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :512–517.
Visible light communication (VLC) is a burgeoning field in wireless communications as it considers illumination and communication simultaneously. The broadcast nature of VLC makes it necessary to consider the security of underlying transmissions. A physical-layer security (PLS) scheme by introducing jamming LEDs is considered in this paper. The secrecy rate of an indoor VLC system with multiple LEDs, one legitimate receiver, and multiple eavesdroppers is investigated. Three distributions of input signal are assumed, i.e., truncated generalized normal distribution (TGN), uniform distribution, and exponential distribution. The results show that jamming can improve the secrecy performance efficiently. This paper also demonstrates that when the numbers of LEDs transmitting information-bearing signal and jamming signal are equal, the average secrecy rate can be maximized.
2019-01-21
Cho, S., Chen, G., Chun, H., Coon, J. P., O'Brien, D..  2018.  Impact of multipath reflections on secrecy in VLC systems with randomly located eavesdroppers. 2018 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Considering reflected light in physical layer security (PLS) is very important because a small portion of reflected light enables an eavesdropper (ED) to acquire legitimate information. Moreover, it would be a practical strategy for an ED to be located at an outer area of the room, where the reflection light is strong, in order to escape the vigilance of a legitimate user. Therefore, in this paper, we investigate the impact of multipath reflections on PLS in visible light communication in the presence of randomly located eavesdroppers. We apply spatial point processes to characterize randomly distributed EDs. The generalized error in signal-to-noise ratio that occurs when reflections are ignored is defined as a function of the distance between the receiver and the wall. We use this error for quantifying the domain of interest that needs to be considered from the secrecy viewpoint. Furthermore, we investigate how the reflection affects the secrecy outage probability (SOP). It is shown that the effect of the reflection on the SOP can be removed by adjusting the light emitting diode configuration. Monte Carlo simulations and numerical results are given to verify our analysis.
Shahjalal, M., Chowdhury, M. Z., Hasan, M. K., Hossan, M. T., Jang, Y. Min.  2018.  A Generalized SDN Framework for Optical Wireless Communication Networks. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :848–851.
Wireless communication based on optical spectrum has been a promising technology to support increasing bandwidth demand in the recent years. Light fidelity, optical camera communication, visible light communication, underwater optical wireless communication, free space optical communication are such technologies those have been already deployed to support the challenges in wireless communications. Those technologies create massive data traffic as lots of infrastructures and servers are connected with the internet. Software defined optical wireless networks have been introduced in this paper as a solution to this phenomenon. An architecture has been designed where we provide the general software defined networking (SDN) structure and describe the possible tasks which can be performed by the SDN for optical wireless communication.