Visible to the public Biblio

Filters: Keyword is receiver  [Clear All Filters]
2023-06-22
He, Yuxin, Zhuang, Yaqiang, Zhuang, Xuebin, Lin, Zijian.  2022.  A GNSS Spoofing Detection Method based on Sparse Decomposition Technique. 2022 IEEE International Conference on Unmanned Systems (ICUS). :537–542.
By broadcasting false Global Navigation Satellite System (GNSS) signals, spoofing attacks will induce false position and time fixes within the victim receiver. In this article, we propose a Sparse Decomposition (SD)-based spoofing detection algorithm in the acquisition process, which can be applied in a single-antenna receiver. In the first step, we map the Fast Fourier transform (FFT)-based acquisition result in a two-dimensional matrix, which is a distorted autocorrelation function when the receiver is under spoof attack. In the second step, the distorted function is decomposed into two main autocorrelation function components of different code phases. The corresponding elements of the result vector of the SD are the code-phase values of the spoofed and the authentic signals. Numerical simulation results show that the proposed method can not only outcome spoofing detection result, but provide reliable estimations of the code phase delay of the spoof attack.
ISSN: 2771-7372
2020-07-13
Ge, Hong, Dai, Jianxin, Huang, Bo, Wang, Jin-Yuan.  2019.  Secrecy Rate Analysis for Visible Light Communications Using Spatial Modulation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1241–1248.
This paper mainly investigates the physical layer security for visible light communication (VLC) based on spatial modulation (SM). The indoor VLC system includes multiple transmitters, a legitimate receiver and an eavesdropper. In the system, we consider two constraints of the input signal: non-negative and dimmable average optical intensity constraints. According to the principle of information theory and the spatial modulation scheme of uniform selection (US), the upper and the lower bounds on the secrecy rate for SM based VLC are derived, respectively. Numerical results show that the performance gap between the upper and lower bounds of the secrecy rate is small and relatively close, which indicates that the derived secrecy rate bounds can be used to evaluate the system performance. Moreover, when the number of transmitters is set to be one, the spatial modulation disappears, and the secrecy rate bounds in this paper are consistent with the existing results. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme is proposed for selecting the active transmitter. Numerical result indicates that the CAS scheme has better performance than the US scheme.
2017-12-20
Wang, Fei, Zhang, Xi.  2017.  Secure resource allocation for polarization-enabled green cooperative cognitive radio networks with untrusted secondary users. 2017 51st Annual Conference on Information Sciences and Systems (CISS). :1–6.
We address secure resource allocation for an OFDMA cooperative cognitive radio network (CRN) with energy harvesting (EH) capability. In the network, one primary user (PU) cooperates with several untrusted secondary users (SUs) with one SU transmitter and several SU receivers, where the SU transmitter and all SU receivers may overhear the PU transmitter's information while all SU receivers may eavesdrop on each other's signals. We consider the scenario when SUs are wireless devices with small physical sizes; therefore to improve system performance we suppose that SUs are equipped with co-located orthogonally dual-polarized antennas (ODPAs). With ODPAs, on one hand, the SU transmitter can first harvest energy from radio frequency (RF) signals emitted by the PU transmitter, and then utilize the harvested energy to simultaneously serve the PU and all SU receivers. On the other hand, by exploiting polarization-based signal processing techniques, both the PU's and SUs' physical-layer security can be enhanced. In particular, to ensure the PU's communication security, the PU receiver also sends jamming signals to degrade the reception performance of SUs, and meanwhile the jamming signals can also become new sources of energy powering the SU transmitter. For the considered scenario, we investigate the joint allocation of subcarriers, powers, and power splitting ratios to maximize the total secrecy rate of all SUs while ensuring the PU's minimum secrecy rate requirement. Finally, we evaluate the performance of our resource allocation scheme through numerical analyses.
2015-05-06
Weikun Hou, Xianbin Wang, Chouinard, J.-Y., Refaey, A..  2014.  Physical Layer Authentication for Mobile Systems with Time-Varying Carrier Frequency Offsets. Communications, IEEE Transactions on. 62:1658-1667.

A novel physical layer authentication scheme is proposed in this paper by exploiting the time-varying carrier frequency offset (CFO) associated with each pair of wireless communications devices. In realistic scenarios, radio frequency oscillators in each transmitter-and-receiver pair always present device-dependent biases to the nominal oscillating frequency. The combination of these biases and mobility-induced Doppler shift, characterized as a time-varying CFO, can be used as a radiometric signature for wireless device authentication. In the proposed authentication scheme, the variable CFO values at different communication times are first estimated. Kalman filtering is then employed to predict the current value by tracking the past CFO variation, which is modeled as an autoregressive random process. To achieve the proposed authentication, the current CFO estimate is compared with the Kalman predicted CFO using hypothesis testing to determine whether the signal has followed a consistent CFO pattern. An adaptive CFO variation threshold is derived for device discrimination according to the signal-to-noise ratio and the Kalman prediction error. In addition, a software-defined radio (SDR) based prototype platform has been developed to validate the feasibility of using CFO for authentication. Simulation results further confirm the effectiveness of the proposed scheme in multipath fading channels.
 

2015-05-04
Severin, F., Baradarani, A., Taylor, J., Zhelnakov, S., Maev, R..  2014.  Auto-adjustment of image produced by multi-transducer ultrasonic system. Ultrasonics Symposium (IUS), 2014 IEEE International. :1944-1947.

Acoustic microscopy is characterized by relatively long scanning time, which is required for the motion of the transducer over the entire scanning area. This time may be reduced by using a multi-channel acoustical system which has several identical transducers arranged as an array and is mounted on a mechanical scanner so that each transducer scans only a fraction of the total area. The resulting image is formed as a combination of all acquired partial data sets. The mechanical instability of the scanner, as well as the difference in parameters of the individual transducers causes a misalignment of the image fractures. This distortion may be partially compensated for by the introduction of constant or dynamical signal leveling and data shift procedures. However, a reduction of the random instability component requires more advanced algorithms, including auto-adjustment of processing parameters. The described procedure was implemented into the prototype of an ultrasonic fingerprint reading system. The specialized cylindrical scanner provides a helical spiral lens trajectory which eliminates repeatable acceleration, reduces vibration and allows constant data flow on maximal rate. It is equipped with an array of four spherically focused 50 MHz acoustic lenses operating in pulse-echo mode. Each transducer is connected to a separate channel including pulser, receiver and digitizer. The output 3D data volume contains interlaced B-scans coming from each channel. Afterward, data processing includes pre-determined procedures of constant layer shift in order to compensate for the transducer displacement, phase shift and amplitude leveling for compensation of variation in transducer characteristics. Analysis of statistical parameters of individual scans allows adaptive eliminating of the axial misalignment and mechanical vibrations. Further 2D correlation of overlapping partial C-scans will realize an interpolative adjustment which essentially improves the output image. Implementation of this adaptive algorithm into a data processing sequence allows us to significantly reduce misreading due to hardware noise and finger motion during scanning. The system provides a high quality acoustic image of the fingerprint including different levels of information: fingerprint pattern, sweat porous locations, internal dermis structures. These additional features can effectively facilitate fingerprint based identification. The developed principles and algorithm implementations allow improved quality, stability and reliability of acoustical data obtained with the mechanical scanner, accommodating several transducers. General principles developed during this work can be applied to other configurations of advanced ultrasonic systems designed for various biomedical and NDE applications. The data processing algorithm, developed for a specific biometric task, can be adapted for the compensation of mechanical imperfections of the other devices.

2015-04-30
Ta-Yuan Liu, Mukherjee, P., Ulukus, S., Shih-Chun Lin, Hong, Y.-W.P..  2014.  Secure DoF of MIMO Rayleigh block fading wiretap channels with No CSI anywhere. Communications (ICC), 2014 IEEE International Conference on. :1959-1964.

We consider the block Rayleigh fading multiple-input multiple-output (MIMO) wiretap channel with no prior channel state information (CSI) available at any of the terminals. The channel gains remain constant in a coherence time of T symbols, and then change to another independent realization. The transmitter, the legitimate receiver and the eavesdropper have nt, nr and ne antennas, respectively. We determine the exact secure degrees of freedom (s.d.o.f.) of this system when T ≥ 2 min(nt, nr). We show that, in this case, the s.d.o.f. is exactly (min(nt, nr) - ne)+(T - min(nt, nr))/T. The first term can be interpreted as the eavesdropper with ne antennas taking away ne antennas from both the transmitter and the legitimate receiver. The second term can be interpreted as a fraction of s.d.o.f. being lost due to the lack of CSI at the legitimate receiver. In particular, the fraction loss, min(nt, nr)/T, can be interpreted as the fraction of channel uses dedicated to training the legitimate receiver for it to learn its own CSI. We prove that this s.d.o.f. can be achieved by employing a constant norm channel input, which can be viewed as a generalization of discrete signalling to multiple dimensions.