Visible to the public Biblio

Found 188 results

Filters: Keyword is Computing Theory  [Clear All Filters]
2021-07-27
Van Vu, Thi, Luong, The Dung, Hoang, Van Quan.  2020.  An Elliptic Curve-based Protocol for Privacy Preserving Frequency Computation in 2-Part Fully Distributed Setting. 2020 12th International Conference on Knowledge and Systems Engineering (KSE). :91–96.
Privacy-preserving frequency computation is critical to privacy-preserving data mining in 2-Part Fully Distributed Setting (such as association rule analysis, clustering, and classification analysis) and has been investigated in many researches. However, these solutions are based on the Elgamal Cryptosystem, making computation and communication efficiency low. Therefore, this paper proposes an improved protocol using an Elliptic Curve Cryptosystem. The theoretical and experimental analysis shows that the proposed method is effective in both computing and communication compared to other methods.
Bentafat, Elmahdi, Rathore, M. Mazhar, Bakiras, Spiridon.  2020.  Privacy-Preserving Traffic Flow Estimation for Road Networks. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Future intelligent transportation systems necessitate a fine-grained and accurate estimation of vehicular traffic flows across critical paths of the underlying road network. This task is relatively trivial if we are able to collect detailed trajectories from every moving vehicle throughout the day. Nevertheless, this approach compromises the location privacy of the vehicles and may be used to build accurate profiles of the corresponding individuals. To this end, this work introduces a privacy-preserving protocol that leverages roadside units (RSUs) to communicate with the passing vehicles, in order to construct encrypted Bloom filters stemming from the vehicle IDs. The aggregate Bloom filters are encrypted with a threshold cryptosystem and can only be decrypted by the transportation authority in collaboration with multiple trusted entities. As a result, the individual communications between the vehicles and the RSUs remain secret. The decrypted Bloom filters reveal the aggregate traffic information at each RSU, but may also serve as a means to compute an approximation of the traffic flow between any pair of RSUs, by simply estimating the number of common vehicles in their respective Bloom filters. We performed extensive simulation experiments with various configuration parameters and demonstrate that our protocol reduces the estimation error considerably when compared to the current state-of-the-art approaches. Furthermore, our implementation of the underlying cryptographic primitives illustrates the feasibility, practicality, and scalability of the system.
Sengupta, Poushali, Paul, Sudipta, Mishra, Subhankar.  2020.  BUDS: Balancing Utility and Differential Privacy by Shuffling. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
Balancing utility and differential privacy by shuffling or BUDS is an approach towards crowd sourced, statistical databases, with strong privacy and utility balance using differential privacy theory. Here, a novel algorithm is proposed using one-hot encoding and iterative shuffling with the loss estimation and risk minimization techniques, to balance both the utility and privacy. In this work, after collecting one-hot encoded data from different sources and clients, a step of novel attribute shuffling technique using iterative shuffling (based on the query asked by the analyst) and loss estimation with an updation function and risk minimization produces a utility and privacy balanced differential private report. During empirical test of balanced utility and privacy, BUDS produces ε = 0.02 which is a very promising result. Our algorithm maintains a privacy bound of ε = ln[t/((n1-1)S)] and loss bound of c'\textbackslashtextbareln[t/((n1-1)S)]-1\textbackslashtextbar.
Jiao, Rui, Zhang, Lan, Li, Anran.  2020.  IEye: Personalized Image Privacy Detection. 2020 6th International Conference on Big Data Computing and Communications (BIGCOM). :91–95.
Massive images are being shared via a variety of ways, such as social networking. The rich content of images raise a serious concern for privacy. A great number of efforts have been devoted to designing mechanisms for privacy protection based on the assumption that the privacy is well defined. However, in practice, given a collection of images it is usually nontrivial to decide which parts of images should be protected, since the sensitivity of objects is context-dependent and user-dependent. To meet personalized privacy requirements of different users, we propose a system IEye to automatically detect private parts of images based on both common knowledge and personal knowledge. Specifically, for each user's images, multi-layered semantic graphs are constructed as feature representations of his/her images and a rule set is learned from those graphs, which describes his/her personalized privacy. In addition, an optimization algorithm is proposed to protect the user's privacy as well as minimize the loss of utility. We conduct experiments on two datasets, the results verify the effectiveness of our design to detect and protect personalized image privacy.
Zheng, Zhihao, Cao, Zhenfu, Shen, Jiachen.  2020.  Practical and Secure Circular Range Search on Private Spatial Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :639–645.
With the location-based services (LBS) booming, the volume of spatial data inevitably explodes. In order to reduce local storage and computational overhead, users tend to outsource data and initiate queries to the cloud. However, sensitive data or queries may be compromised if cloud server has access to raw data and plaintext token. To cope with this problem, searchable encryption for geometric range is applied. Geometric range search has wide applications in many scenarios, especially the circular range search. In this paper, a practical and secure circular range search scheme (PSCS) is proposed to support searching for spatial data in a circular range. With our scheme, a semi-honest cloud server will return data for a given circular range correctly without uncovering index privacy or query privacy. We propose a polynomial split algorithm which can decompose the inner product calculation neatly. Then, we define the security of our PSCS formally and prove that it is secure under same-closeness-pattern chosen-plaintext attacks (CLS-CPA) in theory. In addition, we demonstrate the efficiency and accuracy through analysis and experiments compared with existing schemes.
Driss, Maha, Aljehani, Amani, Boulila, Wadii, Ghandorh, Hamza, Al-Sarem, Mohammed.  2020.  Servicing Your Requirements: An FCA and RCA-Driven Approach for Semantic Web Services Composition. IEEE Access. 8:59326—59339.
The evolution of Service-Oriented Computing (SOC) provides more efficient software development methods for building and engineering new value-added service-based applications. SOC is a computing paradigm that relies on Web services as fundamental elements. Research and technical advancements in Web services composition have been considered as an effective opportunity to develop new service-based applications satisfying complex requirements rapidly and efficiently. In this paper, we present a novel approach enhancing the composition of semantic Web services. The novelty of our approach, as compared to others reported in the literature, rests on: i) mapping user's/organization's requirements with Business Process Modeling Notation (BPMN) and semantic descriptions using ontologies, ii) considering functional requirements and also different types of non-functional requirements, such as quality of service (QoS), quality of experience (QoE), and quality of business (QoBiz), iii) using Formal Concept Analysis (FCA) technique to select the optimal set of Web services, iv) considering composability levels between sequential Web services using Relational Concept Analysis (RCA) technique to decrease the required adaptation efforts, and finally, v) validating the obtained service-based applications by performing an analytical technique, which is the monitoring. The approach experimented on an extended version of the OWLS-TC dataset, which includes more than 10830 Web services descriptions from various domains. The obtained results demonstrate that our approach allows to successfully and effectively compose Web services satisfying different types of user's functional and non-functional requirements.
Kim, Hyeji, Jiang, Yihan, Kannan, Sreeram, Oh, Sewoong, Viswanath, Pramod.  2020.  Deepcode: Feedback Codes via Deep Learning. IEEE Journal on Selected Areas in Information Theory. 1:194—206.
The design of codes for communicating reliably over a statistically well defined channel is an important endeavor involving deep mathematical research and wide-ranging practical applications. In this work, we present the first family of codes obtained via deep learning, which significantly outperforms state-of-the-art codes designed over several decades of research. The communication channel under consideration is the Gaussian noise channel with feedback, whose study was initiated by Shannon; feedback is known theoretically to improve reliability of communication, but no practical codes that do so have ever been successfully constructed. We break this logjam by integrating information theoretic insights harmoniously with recurrent-neural-network based encoders and decoders to create novel codes that outperform known codes by 3 orders of magnitude in reliability and achieve a 3dB gain in terms of SNR. We also demonstrate several desirable properties of the codes: (a) generalization to larger block lengths, (b) composability with known codes, and (c) adaptation to practical constraints. This result also has broader ramifications for coding theory: even when the channel has a clear mathematical model, deep learning methodologies, when combined with channel-specific information-theoretic insights, can potentially beat state-of-the-art codes constructed over decades of mathematical research.
Basu, Prithwish, Salonidis, Theodoros, Kraczek, Brent, Saghaian, Sayed M., Sydney, Ali, Ko, Bongjun, La Porta, Tom, Chan, Kevin.  2020.  Decentralized placement of data and analytics in wireless networks for energy-efficient execution. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :486—495.
We address energy-efficient placement of data and analytics components of composite analytics services on a wireless network to minimize execution-time energy consumption (computation and communication) subject to compute, storage and network resource constraints. We introduce an expressive analytics service hypergraph model for representing k-ary composability relationships (k ≥ 2) between various analytics and data components and leverage binary quadratic programming (BQP) to minimize the total energy consumption of a given placement of the analytics hypergraph nodes on the network subject to resource availability constraints. Then, after defining a potential energy functional Φ(·) to model the affinities of analytics components and network resources using analogs of attractive and repulsive forces in physics, we propose a decentralized Metropolis Monte Carlo (MMC) sampling method which seeks to minimize Φ by moving analytics and data on the network. Although Φ is non-convex, using a potential game formulation, we identify conditions under which the algorithm provably converges to a local minimum energy equilibrium placement configuration. Trace-based simulations of the placement of a deep-neural-network analytics service on a realistic wireless network show that for smaller problem instances our MMC algorithm yields placements with total energy within a small factor of BQP and more balanced workload distributions; for larger problems, it yields low-energy configurations while the BQP approach fails.
2021-06-02
Bychkov, Igor, Feoktistov, Alexander, Gorsky, Sergey, Edelev, Alexei, Sidorov, Ivan, Kostromin, Roman, Fereferov, Evgeniy, Fedorov, Roman.  2020.  Supercomputer Engineering for Supporting Decision-making on Energy Systems Resilience. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). :1—6.
We propose a new approach to creating a subject-oriented distributed computing environment. Such an environment is used to support decision-making in solving relevant problems of ensuring energy systems resilience. The proposed approach is based on the idea of advancing and integrating the following important capabilities in supercomputer engineering: continuous integration, delivery, and deployment of the system and applied software, high-performance computing in heterogeneous environments, multi-agent intelligent computation planning and resource allocation, big data processing and geo-information servicing for subject information, including weakly structured data, and decision-making support. This combination of capabilities and their advancing are unique to the subject domain under consideration, which is related to combinatorial studying critical objects of energy systems. Evaluation of decision-making alternatives is carrying out through applying combinatorial modeling and multi-criteria selection rules. The Orlando Tools framework is used as the basis for an integrated software environment. It implements a flexible modular approach to the development of scientific applications (distributed applied software packages).
Gohari, Parham, Hale, Matthew, Topcu, Ufuk.  2020.  Privacy-Preserving Policy Synthesis in Markov Decision Processes. 2020 59th IEEE Conference on Decision and Control (CDC). :6266—6271.
In decision-making problems, the actions of an agent may reveal sensitive information that drives its decisions. For instance, a corporation's investment decisions may reveal its sensitive knowledge about market dynamics. To prevent this type of information leakage, we introduce a policy synthesis algorithm that protects the privacy of the transition probabilities in a Markov decision process. We use differential privacy as the mathematical definition of privacy. The algorithm first perturbs the transition probabilities using a mechanism that provides differential privacy. Then, based on the privatized transition probabilities, we synthesize a policy using dynamic programming. Our main contribution is to bound the "cost of privacy," i.e., the difference between the expected total rewards with privacy and the expected total rewards without privacy. We also show that computing the cost of privacy has time complexity that is polynomial in the parameters of the problem. Moreover, we establish that the cost of privacy increases with the strength of differential privacy protections, and we quantify this increase. Finally, numerical experiments on two example environments validate the established relationship between the cost of privacy and the strength of data privacy protections.
Gursoy, M. Emre, Rajasekar, Vivekanand, Liu, Ling.  2020.  Utility-Optimized Synthesis of Differentially Private Location Traces. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :30—39.
Differentially private location trace synthesis (DPLTS) has recently emerged as a solution to protect mobile users' privacy while enabling the analysis and sharing of their location traces. A key challenge in DPLTS is to best preserve the utility in location trace datasets, which is non-trivial considering the high dimensionality, complexity and heterogeneity of datasets, as well as the diverse types and notions of utility. In this paper, we present OptaTrace: a utility-optimized and targeted approach to DPLTS. Given a real trace dataset D, the differential privacy parameter ε controlling the strength of privacy protection, and the utility/error metric Err of interest; OptaTrace uses Bayesian optimization to optimize DPLTS such that the output error (measured in terms of given metric Err) is minimized while ε-differential privacy is satisfied. In addition, OptaTrace introduces a utility module that contains several built-in error metrics for utility benchmarking and for choosing Err, as well as a front-end web interface for accessible and interactive DPLTS service. Experiments show that OptaTrace's optimized output can yield substantial utility improvement and error reduction compared to previous work.
2021-06-01
Zhu, Luqi, Wang, Jin, Shi, Lianmin, Zhou, Jingya, Lu, Kejie, Wang, Jianping.  2020.  Secure Coded Matrix Multiplication Against Cooperative Attack in Edge Computing. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :547–556.
In recent years, the computation security of edge computing has been raised as a major concern since the edge devices are often distributed on the edge of the network, less trustworthy than cloud servers and have limited storage/ computation/ communication resources. Recently, coded computing has been proposed to protect the confidentiality of computing data under edge device's independent attack and minimize the total cost (resource consumption) of edge system. In this paper, for the cooperative attack, we design an efficient scheme to ensure the information-theory security (ITS) of user's data and further reduce the total cost of edge system. Specifically, we take matrix multiplication as an example, which is an important module appeared in many application operations. Moreover, we theoretically analyze the necessary and sufficient conditions for the existence of feasible scheme, prove the security and decodeability of the proposed scheme. We also prove the effectiveness of the proposed scheme through considerable simulation experiments. Compared with the existing schemes, the proposed scheme further reduces the total cost of edge system. The experiments also show a trade-off between storage and communication.
Hashemi, Seyed Mahmood.  2020.  Intelligent Approaches for the Trust Assessment. 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). :348–352.
There is a need for suitable approaches to trust assessment to cover the problems of human life. Trust assessment for the information communication related to the quality of service (QoS). The server sends data packets to the client(s) according to the trust assessment. The motivation of this paper is designing a proper approach for the trust assessment process. We propose two methods that are based on the fuzzy systems and genetic algorithm. We compare the results of proposed approaches that can guide to select the proper approaches.
Naderi, Pooria Taghizadeh, Taghiyareh, Fattaneh.  2020.  LookLike: Similarity-based Trust Prediction in Weighted Sign Networks. 2020 6th International Conference on Web Research (ICWR). :294–298.
Trust network is widely considered to be one of the most important aspects of social networks. It has many applications in the field of recommender systems and opinion formation. Few researchers have addressed the problem of trust/distrust prediction and, it has not yet been established whether the similarity measures can do trust prediction. The present paper aims to validate that similar users have related trust relationships. To predict trust relations between two users, the LookLike algorithm was introduced. Then we used the LookLike algorithm results as new features for supervised classifiers to predict the trust/distrust label. We chose a list of similarity measures to examined our claim on four real-world trust network datasets. The results demonstrated that there is a strong correlation between users' similarity and their opinion on trust networks. Due to the tight relation between trust prediction and truth discovery, we believe that our similarity-based algorithm could be a promising solution in their challenging domains.
Thakare, Vaishali Ravindra, Singh, K. John, Prabhu, C S R, Priya, M..  2020.  Trust Evaluation Model for Cloud Security Using Fuzzy Theory. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1–4.
Cloud computing is a new kind of computing model which allows users to effectively rent virtualized computing resources on pay as you go model. It offers many advantages over traditional models in IT industries and healthcare as well. However, there is lack of trust between CSUs and CSPs to prevent the extensive implementation of cloud technologies amongst industries. Different models are developed to overcome the uncertainty and complexity between CSP and CSU regarding suitability. Several researchers focused on resource optimization, scheduling and service dependability in cloud computing by using fuzzy logic. But, data storage and security using fuzzy logic have been ignored. In this paper, a trust evaluation model is proposed for cloud computing security using fuzzy theory. Authors evaluates how fuzzy logic increases efficiency in trust evaluation. To validate the effectiveness of proposed FTEM, authors presents a case study of healthcare organization.
Mohammed, Alshaimaa M., Omara, Fatma A..  2020.  A Framework for Trust Management in Cloud Computing Environment. 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE). :7–13.
Cloud Computing is considered as a business model for providing IT resources as services through the Internet based on pay-as-you-go principle. These IT resources are provided by Cloud Service Providers (CSPs) and requested by Cloud Service Consumers (CSCs). Selecting the proper CSP to deliver services is a critical and strategic process. According to the work in this paper, a framework for trust management in cloud computing has been introduced. The proposed framework consists of five stages; Filtrating, Trusting, Similarity, Ranking and Monitoring. In the Filtrating stage, the existing CSPs in the system will be filtered based on their parameters. The CSPs trust values are calculated in the Trusting stage. Then, the similarity between the CSC requirements and the CSPs data is calculated in the Similarity stage. The ranking of CSPs will be performed in Ranking stage. According to the Monitoring stage, after finishing the service, the CSC sends his feedbacks about the CSP who delivered the service to be used to monitor this CSP. To evaluate the performance of the proposed framework, a comparative study has been done for the Ranking and Monitoring stages using Armor dataset. According to the comparative results it is found that the proposed framework increases the reliability and performance of the cloud environment.
Yan, Qifei, Zhou, Yan, Zou, Li, Li, Yanling.  2020.  Evidence Fusion Method Based on Evidence Trust and Exponential Weighting. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1851–1855.
In order to solve the problems of unreasonable fusion results of high conflict evidence and ineffectiveness of coefficient weighting in classical evidence theory, a method of evidence fusion based on evidence trust degree and exponential weighting is proposed. Firstly, the fusion factor is constructed based on probability distribution function and evidence trust degree, then the fusion factor is exponentially weighted by evidence weight, and then the evidence fusion rule based on fusion factor is constructed. The results show that this method can effectively solve the problems of unreasonable fusion results of high conflict evidence and ineffectiveness of coefficient weighting. It shows that the new fusion method are more reasonable, which provides a new idea and method for solving the problems in evidence theory.
Zheng, Yang, Chunlin, Yin, Zhengyun, Fang, Na, Zhao.  2020.  Trust Chain Model and Credibility Analysis in Software Systems. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :153–156.
The credibility of software systems is an important indicator in measuring the performance of software systems. Effective analysis of the credibility of systems is a controversial topic in the research of trusted software. In this paper, the trusted boot and integrity metrics of a software system are analyzed. The different trust chain models, chain and star, are obtained by using different methods for credibility detection of functional modules in the system operation. Finally, based on the operation of the system, trust and failure relation graphs are established to analyze and measure the credibility of the system.
Hatti, Daneshwari I., Sutagundar, Ashok V..  2020.  Trust Induced Resource Provisioning (TIRP) Mechanism in IoT. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–5.
Due to increased number of devices with limited resources in Internet of Things (IoT) has to serve time sensitive applications including health monitoring, emergency response, industrial applications and smart city etc. This has incurred the problem of solving the provisioning of limited computational resources of the devices to fulfill the requirement with reduced latency. With rapid increase of devices and heterogeneity characteristic the resource provisioning is crucial and leads to conflict of trusting among the devices requests. Trust is essential component in any context for communicating or sharing the resources in the network. The proposed work comprises of trusting and provisioning based on deadline. Trust quantity is measured with concept of game theory and optimal strategy decision among provider and customer and provision resources within deadline to execute the tasks is done by finding Nash equilibrium. Nash equilibrium (NE) is estimated by constructing the payoff matrix with choice of two player strategies. NE is obtained in the proposed work for the Trust- Respond (TR) strategy. The latency aware approach for avoiding resource contention due to limited resources of the edge devices, fog computing leverages the cloud services in a distributed way at the edge of the devices. The communication is established between edge devices-fog-cloud and provision of resources is performed based on scalar chain and Gang Plank theory of management to reduce latency and increase trust quantity. To test the performance of proposed work performance parameter considered are latency and computational time.
Wang, Qi, Zhao, Weiliang, Yang, Jian, Wu, Jia, Zhou, Chuan, Xing, Qianli.  2020.  AtNE-Trust: Attributed Trust Network Embedding for Trust Prediction in Online Social Networks. 2020 IEEE International Conference on Data Mining (ICDM). :601–610.
Trust relationship prediction among people provides valuable supports for decision making, information dissemination, and product promotion in online social networks. Network embedding has achieved promising performance for link prediction by learning node representations that encode intrinsic network structures. However, most of the existing network embedding solutions cannot effectively capture the properties of a trust network that has directed edges and nodes with in/out links. Furthermore, there usually exist rich user attributes in trust networks, such as ratings, reviews, and the rated/reviewed items, which may exert significant impacts on the formation of trust relationships. It is still lacking a network embedding-based method that can adequately integrate these properties for trust prediction. In this work, we develop an AtNE-Trust model to address these issues. We firstly capture user embedding from both the trust network structures and user attributes. Then we design a deep multi-view representation learning module to further mine and fuse the obtained user embedding. Finally, a trust evaluation module is developed to predict the trust relationships between users. Representation learning and trust evaluation are optimized together to capture high-quality user embedding and make accurate predictions simultaneously. A set of experiments against the real-world datasets demonstrates the effectiveness of the proposed approach.
Gu, Yanyang, Zhang, Ping, Chen, Zhifeng, Cao, Fei.  2020.  UEFI Trusted Computing Vulnerability Analysis Based on State Transition Graph. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1043–1052.
In the face of increasingly serious firmware attacks, it is of great significance to analyze the vulnerability security of UEFI. This paper first introduces the commonly used trusted authentication mechanisms of UEFI. Then, aiming at the loopholes in the process of UEFI trust verification in the startup phase, combined with the state transition diagram, PageRank algorithm and Bayesian network theory, the analysis model of UEFI trust verification startup vulnerability is constructed. And according to the example to verify the analysis. Through the verification and analysis of the data obtained, the vulnerable attack paths and key vulnerable nodes are found. Finally, according to the analysis results, security enhancement measures for UEFI are proposed.
2021-05-25
Barbeau, Michel, Cuppens, Frédéric, Cuppens, Nora, Dagnas, Romain, Garcia-Alfaro, Joaquin.  2020.  Metrics to Enhance the Resilience of Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1167—1172.
We focus on resilience towards covert attacks on Cyber-Physical Systems (CPS). We define the new k-steerability and l-monitorability control-theoretic concepts. k-steerability reflects the ability to act on every individual plant state variable with at least k different groups of functionally diverse input signals. l-monitorability indicates the ability to monitor every individual plant state variable with £ different groups of functionally diverse output signals. A CPS with k-steerability and l-monitorability is said to be (k, l)-resilient. k and l, when both greater than one, provide the capability to mitigate the impact of covert attacks when some signals, but not all, are compromised. We analyze the influence of k and l on the resilience of a system and the ability to recover its state when attacks are perpetrated. We argue that the values of k and l can be augmented by combining redundancy and diversity in hardware and software techniques that apply the moving target paradigm.
2021-02-08
Haque, M. A., Shetty, S., Kamhoua, C. A., Gold, K..  2020.  Integrating Mission-Centric Impact Assessment to Operational Resiliency in Cyber-Physical Systems. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–7.

Developing mission-centric impact assessment techniques to address cyber resiliency in the cyber-physical systems (CPSs) requires integrating system inter-dependencies to the risk and resilience analysis process. Generally, network administrators utilize attack graphs to estimate possible consequences in a networked environment. Attack graphs lack to incorporate the operations-specific dependencies. Localizing the dependencies among operational missions, tasks, and the hosting devices in a large-scale CPS is also challenging. In this work, we offer a graphical modeling technique to integrate the mission-centric impact assessment of cyberattacks by relating the effect to the operational resiliency by utilizing a combination of the logical attack graph and mission impact propagation graph. We propose formal techniques to compute cyberattacks’ impact on the operational mission and offer an optimization process to minimize the same, having budgetary restrictions. We also relate the effect to the system functional operability. We illustrate our modeling techniques using a SCADA (supervisory control and data acquisition) case study for the cyber-physical power systems. We believe our proposed method would help evaluate and minimize the impact of cyber attacks on CPS’s operational missions and, thus, enhance cyber resiliency.

2021-02-01
Han, W., Schulz, H.-J..  2020.  Beyond Trust Building — Calibrating Trust in Visual Analytics. 2020 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). :9–15.
Trust is a fundamental factor in how users engage in interactions with Visual Analytics (VA) systems. While the importance of building trust to this end has been pointed out in research, the aspect that trust can also be misplaced is largely ignored in VA so far. This position paper addresses this aspect by putting trust calibration in focus – i.e., the process of aligning the user’s trust with the actual trustworthiness of the VA system. To this end, we present the trust continuum in the context of VA, dissect important trust issues in both VA systems and users, as well as discuss possible approaches that can build and calibrate trust.
2020-12-02
Wang, Q., Zhao, W., Yang, J., Wu, J., Hu, W., Xing, Q..  2019.  DeepTrust: A Deep User Model of Homophily Effect for Trust Prediction. 2019 IEEE International Conference on Data Mining (ICDM). :618—627.

Trust prediction in online social networks is crucial for information dissemination, product promotion, and decision making. Existing work on trust prediction mainly utilizes the network structure or the low-rank approximation of a trust network. These approaches can suffer from the problem of data sparsity and prediction accuracy. Inspired by the homophily theory, which shows a pervasive feature of social and economic networks that trust relations tend to be developed among similar people, we propose a novel deep user model for trust prediction based on user similarity measurement. It is a comprehensive data sparsity insensitive model that combines a user review behavior and the item characteristics that this user is interested in. With this user model, we firstly generate a user's latent features mined from user review behavior and the item properties that the user cares. Then we develop a pair-wise deep neural network to further learn and represent these user features. Finally, we measure the trust relations between a pair of people by calculating the user feature vector cosine similarity. Extensive experiments are conducted on two real-world datasets, which demonstrate the superior performance of the proposed approach over the representative baseline works.