Biblio
In this paper, the cybersecurity of distributed secondary voltage control of AC microgrids is addressed. A resilient approach is proposed to mitigate the negative impacts of cyberthreats on the voltage and reactive power control of Distributed Energy Resources (DERs). The proposed secondary voltage control is inspired by the resilient flocking of a mobile robot team. This approach utilizes a virtual time-varying communication graph in which the quality of the communication links is virtualized and determined based on the synchronization behavior of DERs. The utilized control protocols on DERs ensure that the connectivity of the virtual communication graph is above a specific resilience threshold. Once the resilience threshold is satisfied the Weighted Mean Subsequence Reduced (WMSR) algorithm is applied to satisfy voltage restoration in the presence of malicious adversaries. A typical microgrid test system including 6 DERs is simulated to verify the validity of proposed resilient control approach.
A term systems of systems (SoS) refers to a setup in which a number of independent systems collaborate to create a value that each of them is unable to achieve independently. Complexity of a SoS structure is higher compared to its constitute systems that brings challenges in analyzing its critical properties such as security. An SoS can be seen as a set of connected systems or services that needs to be adequately protected. Communication between such systems or services can be considered as a service itself, and it is the paramount for establishment of a SoS as it enables connections, dependencies, and a cooperation. Given that reliable and predictable communication contributes directly to a correct functioning of an SoS, communication as a service is one of the main assets to consider. Protecting it from malicious adversaries should be one of the highest priorities within SoS design and operation. This study aims to investigate the attack propagation problem in terms of service-guarantees through the decomposition into sub-services enriched with preconditions and postconditions at the service levels. Such analysis is required as a prerequisite for an efficient SoS risk assessment at the design stage of the SoS development life cycle to protect it from possibly high impact attacks capable of affecting safety of systems and humans using the system.
The secure two-party computation (S2PC) protocols SHADE and GSHADE have been introduced by Bringer et al. in the last two years. The protocol GSHADE permits to compute different distances (Hamming, Euclidean, Mahalanobis) quite efficiently and is one of the most efficient compared to other S2PC methods. Thus this protocol can be used to efficiently compute one-to-many identification for several biometrics data (iris, face, fingerprint). In this paper, we introduce two extensions of GSHADE. The first one enables us to evaluate new multiplicative functions. This way, we show how to apply GSHADE to a classical machine learning algorithm. The second one is a new proposal to secure GSHADE against malicious adversaries following the recent dual execution and cut-and-choose strategies. The additional cost is very small. By preserving the GSHADE's structure, our extensions are very efficient compared to other S2PC methods.