Visible to the public Biblio

Filters: Keyword is resampling  [Clear All Filters]
2018-07-06
Zhang, F., Chan, P. P. K., Tang, T. Q..  2015.  L-GEM based robust learning against poisoning attack. 2015 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). :175–178.

Poisoning attack in which an adversary misleads the learning process by manipulating its training set significantly affect the performance of classifiers in security applications. This paper proposed a robust learning method which reduces the influences of attack samples on learning. The sensitivity, defined as the fluctuation of the output with small perturbation of the input, in Localized Generalization Error Model (L-GEM) is measured for each training sample. The classifier's output on attack samples may be sensitive and inaccurate since these samples are different from other untainted samples. An import score is assigned to each sample according to its localized generalization error bound. The classifier is trained using a new training set obtained by resampling the samples according to their importance scores. RBFNN is applied as the classifier in experimental evaluation. The proposed model outperforms than the traditional one under the well-known label flip poisoning attacks including nearest-first and farthest-first flips attack.

2017-10-04
Lee, Won-Jong, Hwang, Seok Joong, Shin, Youngsam, Ryu, Soojung, Ihm, Insung.  2016.  Adaptive Multi-rate Ray Sampling on Mobile Ray Tracing GPU. SIGGRAPH ASIA 2016 Mobile Graphics and Interactive Applications. :3:1–3:6.
We present an adaptive multi-rate ray sampling algorithm targeting mobile ray-tracing GPUs. We efficiently combine two existing algorithms, adaptive supersampling and undersampling, into a single framework targeting ray-tracing GPUs and extend it to a new multi-rate sampling scheme by utilizing tile-based rendering and frame-to-frame coherency. The experimental results show that our implementation is a versatile solution for future ray-tracing GPUs as it provides up to 2.98 times better efficiency in terms of performance per Watt by reducing the number of rays to be fed into the dedicated hardware and minimizing the memory operations.