Biblio
Filters: Keyword is gossip algorithms [Clear All Filters]
Detect Insider Attacks Using CNN in Decentralized Optimization. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8758–8762.
.
2020. This paper studies the security issue of a gossip-based distributed projected gradient (DPG) algorithm, when it is applied for solving a decentralized multi-agent optimization. It is known that the gossip-based DPG algorithm is vulnerable to insider attacks because each agent locally estimates its (sub)gradient without any supervision. This work leverages the convolutional neural network (CNN) to perform the detection and localization of the insider attackers. Compared to the previous work, CNN can learn appropriate decision functions from the original state information without preprocessing through artificially designed rules, thereby alleviating the dependence on complex pre-designed models. Simulation results demonstrate that the proposed CNN-based approach can effectively improve the performance of detecting and localizing malicious agents, as compared with the conventional pre-designed score-based model.
A Polylogarithmic Gossip Algorithm for Plurality Consensus. Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing. :117–126.
.
2016. Consider n anonymous nodes each initially supporting an opinion in \1, 2, …, k\ and suppose that they should all learn the opinion with the largest support. Per round, each node contacts a random other node and exchanges B bits with it, where typically B is at most O(log n). This basic distributed computing problem is called the plurality consensus problem (in the gossip model) and it has received extensive attention. An efficient plurality protocol is one that converges to the plurality consensus as fast as possible, and the standard assumption is that each node has memory at most polylogarithmic in n. The best known time bound is due to Becchetti et al. [SODA'15], reaching plurality consensus in O(k log n) rounds using log(k+1) bits of local memory, under some mild assumptions. As stated by Becchetti et al., achieving a poly-logarithmic time complexity remained an open question. Resolving this question, we present an algorithm that with high probability reaches plurality consensus in O(log k log n) rounds, while having message and memory size of log k + O (1) bits. This even holds under considerably more relaxed assumptions regarding the initial bias (towards plurality) compared to those of prior work. The algorithm is based on a very simple and arguably natural mechanism.