Biblio
The impact of microarchitectural attacks in Personal Computers (PCs) can be further adapted to and observed in internetworked All Programmable System-on-Chip (AP SoC) platforms. This effort involves the access control or execution of Intellectual Property cores in the FPGA of an AP SoC Victim internetworked with an AP SoC Attacker via Internet Protocol (IP). Three conceptions of attacks were implemented: buffer overflow attack at the stack, return-oriented programming attack, and command-injection-based attack for dynamic reconfiguration in the FPGA. Indeed, a specific preventive countermeasure for each attack is proposed. The functionality of the countermeasures mainly comprises adapted words addition (stack protection) for the first and second attacks and multiple encryption for the third attack. In conclusion, the recommended countermeasures are realizable to counteract the implemented attacks.
Despite a long history and numerous proposed defenses, memory corruption attacks are still viable. A secure and low-overhead defense against return-oriented programming (ROP) continues to elude the security community. Currently proposed solutions still must choose between either not fully protecting critical data and relying instead on information hiding, or using incomplete, coarse-grain checking that can be circumvented by a suitably skilled attacker. In this paper, we present a light-weighted memory protection approach (LMP) that uses Intel's MPX hardware extensions to provide complete, fast ROP protection without having to rely in information hiding. We demonstrate a prototype that defeats ROP attacks while incurring an average runtime overhead of 3.9%.