Visible to the public Biblio

Filters: Keyword is Attribute-Based Encryption (ABE)  [Clear All Filters]
2021-06-02
Priyanka, J., Rajeshwari, K.Raja, Ramakrishnan, M..  2020.  Operative Access Regulator for Attribute Based Generalized Signcryption Using Rough Set Theory. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :458—460.
The personal health record has been shared and preserved easily with cloud core storage. Privacy and security have been one of the main demerits of core CloudHealthData storage. By increasing the security concerns in this paper experimented Operative Access Regulator for Attribute Based Generalized Signcryption Using rough set theory. By using rough set theory, the classifications of the attribute have been improved as well as the compulsory attribute has been formatted for decrypting process by using reduct and core. The Generalized signcryption defined priority wise access to diminish the cost and rise the effectiveness of the proposed model. The PHR has been stored under the access priorities of Signature only, encryption only and signcryption only mode. The proposed ABGS performance fulfills the secrecy, authentication and also other security principles.
2019-02-13
Yasumura, Y., Imabayashi, H., Yamana, H..  2018.  Attribute-based proxy re-encryption method for revocation in cloud storage: Reduction of communication cost at re-encryption. 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA). :312–318.
In recent years, many users have uploaded data to the cloud for easy storage and sharing with other users. At the same time, security and privacy concerns for the data are growing. Attribute-based encryption (ABE) enables both data security and access control by defining users with attributes so that only those users who have matching attributes can decrypt them. For real-world applications of ABE, revocation of users or their attributes is necessary so that revoked users can no longer decrypt the data. In actual implementations, ABE is used in hybrid with a symmetric encryption scheme such as the advanced encryption standard (AES) where data is encrypted with AES and the AES key is encrypted with ABE. The hybrid encryption scheme requires re-encryption of the data upon revocation to ensure that the revoked users can no longer decrypt that data. To re-encrypt the data, the data owner (DO) must download the data from the cloud, then decrypt, encrypt, and upload the data back to the cloud, resulting in both huge communication costs and computational burden on the DO depending on the size of the data to be re-encrypted. In this paper, we propose an attribute-based proxy re-encryption method in which data can be re-encrypted in the cloud without downloading any data by adopting both ABE and Syalim's encryption scheme. Our proposed scheme reduces the communication cost between the DO and cloud storage. Experimental results show that the proposed method reduces the communication cost by as much as one quarter compared to that of the trivial solution.
2018-02-06
Yasumura, Y., Imabayashi, H., Yamana, H..  2017.  Attribute-Based Proxy Re-Encryption Method for Revocation in Cloud Data Storage. 2017 IEEE International Conference on Big Data (Big Data). :4858–4860.

In the big data era, many users upload data to cloud while security concerns are growing. By using attribute-based encryption (ABE), users can securely store data in cloud while exerting access control over it. Revocation is necessary for real-world applications of ABE so that revoked users can no longer decrypt data. In actual implementations, however, revocation requires re-encryption of data in client side through download, decrypt, encrypt, and upload, which results in huge communication cost between the client and the cloud depending on the data size. In this paper, we propose a new method where the data can be re-encrypted in cloud without downloading any data. The experimental result showed that our method reduces the communication cost by one quarter in comparison with the trivial solution where re-encryption is performed in client side.

2017-10-10
Malik, Adeel Mohammad, Borgh, Joakim, Ohlman, Börje.  2016.  Attribute-Based Encryption on a Resource Constrained Sensor in an Information-Centric Network. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :217–218.

The Information-Centric Networking (ICN) paradigm is drastically different from traditional host-centric IP networking. As a consequence of the disparity between the two, the security models are also very different. The security model for IP is based on securing the end-to-end communication link between the communicating nodes whereas the ICN security model is based on securing data objects often termed as Object Security. Just like the traditional security model, Object security also poses a challenge of key management. This is especially concerning for ICN as data cached in its encrypted form should be usable by several different users. Attribute-Based Encryption (ABE) alleviates this problem by enabling data to be encrypted under a policy that suits several different types of users. Users with different sets of attributes can potentially decrypt the data hence eliminating the need to encrypt the data separately for each type of user. ABE is a more processing intensive task compared to traditional public key encryption methods hence posing a challenge for resource constrained environments with devices that have low memory and battery power. In this demo we show ABE encryption carried out on a resource constrained sensor platform. Encrypted data is transported over an ICN network and is decrypted only by clients that have the correct set of attributes.