Biblio
In the big data era, many users upload data to cloud while security concerns are growing. By using attribute-based encryption (ABE), users can securely store data in cloud while exerting access control over it. Revocation is necessary for real-world applications of ABE so that revoked users can no longer decrypt data. In actual implementations, however, revocation requires re-encryption of data in client side through download, decrypt, encrypt, and upload, which results in huge communication cost between the client and the cloud depending on the data size. In this paper, we propose a new method where the data can be re-encrypted in cloud without downloading any data. The experimental result showed that our method reduces the communication cost by one quarter in comparison with the trivial solution where re-encryption is performed in client side.
The Information-Centric Networking (ICN) paradigm is drastically different from traditional host-centric IP networking. As a consequence of the disparity between the two, the security models are also very different. The security model for IP is based on securing the end-to-end communication link between the communicating nodes whereas the ICN security model is based on securing data objects often termed as Object Security. Just like the traditional security model, Object security also poses a challenge of key management. This is especially concerning for ICN as data cached in its encrypted form should be usable by several different users. Attribute-Based Encryption (ABE) alleviates this problem by enabling data to be encrypted under a policy that suits several different types of users. Users with different sets of attributes can potentially decrypt the data hence eliminating the need to encrypt the data separately for each type of user. ABE is a more processing intensive task compared to traditional public key encryption methods hence posing a challenge for resource constrained environments with devices that have low memory and battery power. In this demo we show ABE encryption carried out on a resource constrained sensor platform. Encrypted data is transported over an ICN network and is decrypted only by clients that have the correct set of attributes.