Biblio
In the network security risk assessment on critical information infrastructure of smart city, to describe attack vectors for predicting possible initial access is a challenging task. In this paper, an attack vector evaluation model based on weakness, path and action is proposed, and the formal representation and quantitative evaluation method are given. This method can support the assessment of attack vectors based on known and unknown weakness through combination of depend conditions. In addition, defense factors are also introduced, an attack vector evaluation model of integrated defense is proposed, and an application example of the model is given. The research work in this paper can provide a reference for the vulnerability assessment of attack vector.
Secure by design is an approach to developing secure software systems from the ground up. In such approach, the alternate security tactics are first thought, among them, the best are selected and enforced by the architecture design, and then used as guiding principles for developers. Thus, design flaws in the architecture of a software system mean that successful attacks could result in enormous consequences. Therefore, secure by design shifts the main focus of software assurance from finding security bugs to identifying architectural flaws in the design. Current research in software security has been neglecting vulnerabilities which are caused by flaws in a software architecture design and/or deteriorations of the implementation of the architectural decisions. In this paper, we present the concept of Common Architectural Weakness Enumeration (CAWE), a catalog which enumerates common types of vulnerabilities rooted in the architecture of a software and provides mitigation techniques to address them. The CAWE catalog organizes the architectural flaws according to known security tactics. We developed an interactive web-based solution which helps designers and developers explore this catalog based on architectural choices made in their project. CAWE catalog contains 224 weaknesses related to security architecture. Through this catalog, we aim to promote the awareness of security architectural flaws and stimulate the security design thinking of developers, software engineers, and architects.
The Software Assurance Metrics and Tool Evaluation (SAMATE) project at the National Institute of Standards and Technology (NIST) has created the Software Assurance Reference Dataset (SARD) to provide researchers and software security assurance tool developers with a set of known security flaws. As part of an empirical evaluation of a runtime monitoring framework, two test suites were executed and monitored, revealing deficiencies which led to a collaboration with the NIST SAMATE team to provide replacements. Test Suites 45 and 46 are analyzed, discussed, and updated to improve accuracy, consistency, preciseness, and automation. Empirical results show metrics such as recall, precision, and F-Measure are all impacted by invalid base assumptions regarding the test suites.
The Software Assurance Metrics and Tool Evaluation (SAMATE) project at the National Institute of Standards and Technology (NIST) has created the Software Assurance Reference Dataset (SARD) to provide researchers and software security assurance tool developers with a set of known security flaws. As part of an empirical evaluation of a runtime monitoring framework, two test suites were executed and monitored, revealing deficiencies which led to a collaboration with the NIST SAMATE team to provide replacements. Test Suites 45 and 46 are analyzed, discussed, and updated to improve accuracy, consistency, preciseness, and automation. Empirical results show metrics such as recall, precision, and F-Measure are all impacted by invalid base assumptions regarding the test suites.