Visible to the public Biblio

Filters: Keyword is space complexity  [Clear All Filters]
2020-06-08
Fang, Bo, Hua, Zhongyun, Huang, Hejiao.  2019.  Locality-Sensitive Hashing Scheme Based on Heap Sort of Hash Bucket. 2019 14th International Conference on Computer Science Education (ICCSE). :5–10.
Nearest neighbor search (NNS) is one of the current popular research directions, which widely used in machine learning, pattern recognition, image detection and so on. In the low dimension data, based on tree search method can get good results. But when the data dimension goes up, that will produce a curse of dimensional. The proposed Locality-Sensitive Hashing algorithm (LSH) greatly improves the efficiency of nearest neighbor query for high dimensional data. But the algorithm relies on the building a large number of hash table, which makes the space complexity very high. C2LSH based on dynamic collision improves the disadvantage of LSH, but its disadvantage is that it needs to detect the collision times of a large number of data points which Increased query time. Therefore, Based on LSH algorithm, later researchers put forward many improved algorithms, but still not ideal.In this paper, we put forward Locality-Sensitive Hashing Scheme Based on Heap Sort of Hash Bucket (HSLSH) algorithm aiming at the shortcomings of LSH and C2LSH. Its main idea is to take advantage of the efficiency of heapsort in massive data sorting to improve the efficiency of nearest neighbor query. It only needs to rely on a small number of hash functions can not only overcome the shortcoming of LSH need to build a large number of hash table, and avoids defects of C2LSH. Experiments show that our algorithm is more than 20% better than C2LSH in query accuracy and 40% percent lower in query time.
2020-04-03
Ayache, Meryeme, Khoumsi, Ahmed, Erradi, Mohammed.  2019.  Managing Security Policies within Cloud Environments Using Aspect-Oriented State Machines. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1—10.

Cloud Computing is the most suitable environment for the collaboration of multiple organizations via its multi-tenancy architecture. However, due to the distributed management of policies within these collaborations, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. On the other hand, current cloud computing solutions do not offer verification tools to manage access control policies. In this paper, we propose a cloud policy verification service (CPVS), that facilitates to users the management of there own security policies within Openstack cloud environment. Specifically, the proposed cloud service offers a policy verification approach to dynamically choose the adequate policy using Aspect-Oriented Finite State Machines (AO-FSM), where pointcuts and advices are used to adopt Domain-Specific Language (DSL) state machine artifacts. The pointcuts define states' patterns representing anomalies (e.g., conflicts) that may occur in a security policy, while the advices define the actions applied at the selected pointcuts to remove the anomalies. In order to demonstrate the efficiency of our approach, we provide time and space complexities. The approach was implemented as middleware service within Openstack cloud environment. The implementation results show that the middleware can detect and resolve different policy anomalies in an efficient manner.

2015-05-01
Yanbing Liu, Qingyun Liu, Ping Liu, Jianlong Tan, Li Guo.  2014.  A factor-searching-based multiple string matching algorithm for intrusion detection. Communications (ICC), 2014 IEEE International Conference on. :653-658.

Multiple string matching plays a fundamental role in network intrusion detection systems. Automata-based multiple string matching algorithms like AC, SBDM and SBOM are widely used in practice, but the huge memory usage of automata prevents them from being applied to a large-scale pattern set. Meanwhile, poor cache locality of huge automata degrades the matching speed of algorithms. Here we propose a space-efficient multiple string matching algorithm BVM, which makes use of bit-vector and succinct hash table to replace the automata used in factor-searching-based algorithms. Space complexity of the proposed algorithm is O(rm2 + ΣpϵP |p|), that is more space-efficient than the classic automata-based algorithms. Experiments on datasets including Snort, ClamAV, URL blacklist and synthetic rules show that the proposed algorithm significantly reduces memory usage and still runs at a fast matching speed. Above all, BVM costs less than 0.75% of the memory usage of AC, and is capable of matching millions of patterns efficiently.

2015-04-30
Yanbing Liu, Qingyun Liu, Ping Liu, Jianlong Tan, Li Guo.  2014.  A factor-searching-based multiple string matching algorithm for intrusion detection. Communications (ICC), 2014 IEEE International Conference on. :653-658.

Multiple string matching plays a fundamental role in network intrusion detection systems. Automata-based multiple string matching algorithms like AC, SBDM and SBOM are widely used in practice, but the huge memory usage of automata prevents them from being applied to a large-scale pattern set. Meanwhile, poor cache locality of huge automata degrades the matching speed of algorithms. Here we propose a space-efficient multiple string matching algorithm BVM, which makes use of bit-vector and succinct hash table to replace the automata used in factor-searching-based algorithms. Space complexity of the proposed algorithm is O(rm2 + ΣpϵP |p|), that is more space-efficient than the classic automata-based algorithms. Experiments on datasets including Snort, ClamAV, URL blacklist and synthetic rules show that the proposed algorithm significantly reduces memory usage and still runs at a fast matching speed. Above all, BVM costs less than 0.75% of the memory usage of AC, and is capable of matching millions of patterns efficiently.