Biblio
Cloud Computing is the most suitable environment for the collaboration of multiple organizations via its multi-tenancy architecture. However, due to the distributed management of policies within these collaborations, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. On the other hand, current cloud computing solutions do not offer verification tools to manage access control policies. In this paper, we propose a cloud policy verification service (CPVS), that facilitates to users the management of there own security policies within Openstack cloud environment. Specifically, the proposed cloud service offers a policy verification approach to dynamically choose the adequate policy using Aspect-Oriented Finite State Machines (AO-FSM), where pointcuts and advices are used to adopt Domain-Specific Language (DSL) state machine artifacts. The pointcuts define states' patterns representing anomalies (e.g., conflicts) that may occur in a security policy, while the advices define the actions applied at the selected pointcuts to remove the anomalies. In order to demonstrate the efficiency of our approach, we provide time and space complexities. The approach was implemented as middleware service within Openstack cloud environment. The implementation results show that the middleware can detect and resolve different policy anomalies in an efficient manner.
Multiple string matching plays a fundamental role in network intrusion detection systems. Automata-based multiple string matching algorithms like AC, SBDM and SBOM are widely used in practice, but the huge memory usage of automata prevents them from being applied to a large-scale pattern set. Meanwhile, poor cache locality of huge automata degrades the matching speed of algorithms. Here we propose a space-efficient multiple string matching algorithm BVM, which makes use of bit-vector and succinct hash table to replace the automata used in factor-searching-based algorithms. Space complexity of the proposed algorithm is O(rm2 + ΣpϵP |p|), that is more space-efficient than the classic automata-based algorithms. Experiments on datasets including Snort, ClamAV, URL blacklist and synthetic rules show that the proposed algorithm significantly reduces memory usage and still runs at a fast matching speed. Above all, BVM costs less than 0.75% of the memory usage of AC, and is capable of matching millions of patterns efficiently.
Multiple string matching plays a fundamental role in network intrusion detection systems. Automata-based multiple string matching algorithms like AC, SBDM and SBOM are widely used in practice, but the huge memory usage of automata prevents them from being applied to a large-scale pattern set. Meanwhile, poor cache locality of huge automata degrades the matching speed of algorithms. Here we propose a space-efficient multiple string matching algorithm BVM, which makes use of bit-vector and succinct hash table to replace the automata used in factor-searching-based algorithms. Space complexity of the proposed algorithm is O(rm2 + ΣpϵP |p|), that is more space-efficient than the classic automata-based algorithms. Experiments on datasets including Snort, ClamAV, URL blacklist and synthetic rules show that the proposed algorithm significantly reduces memory usage and still runs at a fast matching speed. Above all, BVM costs less than 0.75% of the memory usage of AC, and is capable of matching millions of patterns efficiently.