Visible to the public Biblio

Filters: Keyword is free-space optics  [Clear All Filters]
2018-02-21
Hu, Yao, Hara, Hiroaki, Fujiwara, Ikki, Matsutani, Hiroki, Amano, Hideharu, Koibuchi, Michihiro.  2017.  Towards Tightly-coupled Datacenter with Free-space Optical Links. Proceedings of the 2017 International Conference on Cloud and Big Data Computing. :33–39.

Clean slate design of computing system is an emerging topic for continuing growth of warehouse-scale computers. A famous custom design is rackscale (RS) computing by considering a single rack as a computer that consists of a number of processors, storages and accelerators customized to a target application. In RS, each user is expected to occupy a single or more than one rack. However, new users frequently appear and the users often change their application scales and parameters that would require different numbers of processors, storages and accelerators in a rack. The reconfiguration of interconnection networks on their components is potentially needed to support the above demand in RS. In this context, we propose the inter-rackscale (IRS) architecture that disaggregates various hardware resources into different racks according to their own areas. The heart of IRS is to use free-space optics (FSO) for tightly-coupled connections between processors, storages and GPUs distributed in different racks, by swapping endpoints of FSO links to change network topologies. Through a large IRS system simulation, we show that by utilizing FSO links for interconnection between racks, the FSO-equipped IRS architecture can provide comparable communication latency between heterogeneous resources to that of the counterpart RS architecture. A utilization of 3 FSO terminals per rack can improve at least 87.34% of inter-CPU/SSD(GPU) communication over Fat-tree and improve at least 92.18% of that over 2-D Torus. We verify the advantages of IRS over RS in job scheduling performance.

2017-10-19
Schmid, Stefan, Arquint, Linard, Gross, Thomas R..  2016.  Using Smartphones As Continuous Receivers in a Visible Light Communication System. Proceedings of the 3rd Workshop on Visible Light Communication Systems. :61–66.
Visible Light Communication (VLC) allows to reuse a lighting infrastructure for communication while its main purpose of illumination can be carried out at the same time. Light sources based on Light Emitting Diodes (LEDs) are attractive as they are inexpensive, ubiquitous, and allow rapid modulation. This paper describes how to integrate smartphones into such a communication system that supports networking for a wide range of devices, such as toys with single LEDs as transmitter and receivers as well as interconnected LED light bulbs. The main challenge is how to employ the smartphone without any (hardware) modification as a receiver, using the integrated camera as a (slow) light sampling device. This paper presents a simple software-based solution, exploiting the rolling shutter effect and slow motion video capturing capabilities of latest smartphones to enable continuous reception and real-time integration into an existing VLC system. Evaluation results demonstrate a working prototype and report communication distances up to 3m and a maximum data throughput of more than 1200b/s, improving upon previous work.