Visible to the public Biblio

Filters: Keyword is back propagation algorithm  [Clear All Filters]
2020-08-10
Onaolapo, A.K., Akindeji, K.T..  2019.  Application of Artificial Neural Network for Fault Recognition and Classification in Distribution Network. 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). :299–304.
Occurrence of faults in power systems is unavoidable but their timely recognition and location enhances the reliability and security of supply; thereby resulting in economic gain to consumers and power utility alike. Distribution Network (DN) is made smarter by the introduction of sensors and computers into the system. In this paper, detection and classification of faults in DN using Artificial Neural Network (ANN) is emphasized. This is achieved through the employment of Back Propagation Algorithm (BPA) of the Feed Forward Neural Network (FFNN) using three phase voltages and currents as inputs. The simulations were carried out using the MATLAB® 2017a. ANN with various hidden layers were analyzed and the results authenticate the effectiveness of the method.
2017-10-25
Mallik, Nilanjan, Wali, A. S., Kuri, Narendra.  2016.  Damage Location Identification Through Neural Network Learning from Optical Fiber Signal for Structural Health Monitoring. Proceedings of the 5th International Conference on Mechatronics and Control Engineering. :157–161.

Present work deals with prediction of damage location in a composite cantilever beam using signal from optical fiber sensor coupled with a neural network with back propagation based learning mechanism. The experimental study uses glass/epoxy composite cantilever beam. Notch perpendicular to the axis of the beam and spanning throughout the width of the beam is introduced at three different locations viz. at the middle of the span, towards the free end of the beam and towards the fixed end of the beam. A plastic optical fiber of 6 cm gage length is mounted on the top surface of the beam along the axis of the beam exactly at the mid span. He-Ne laser is used as light source for the optical fiber and light emitting from other end of the fiber is converted to electrical signal through a converter. A three layer feed forward neural network architecture is adopted having one each input layer, hidden layer and output layer. Three features are extracted from the signal viz. resonance frequency, normalized amplitude and normalized area under resonance frequency. These three features act as inputs to the neural network input layer. The outputs qualitatively identify the location of the notch.