Visible to the public Biblio

Filters: Keyword is damage  [Clear All Filters]
2019-10-15
Coleman, M. S., Doody, D. P., Shields, M. A..  2018.  Machine Learning for Real-Time Data-Driven Security Practices. 2018 29th Irish Signals and Systems Conference (ISSC). :1–6.

The risk of cyber-attacks exploiting vulnerable organisations has increased significantly over the past several years. These attacks may combine to exploit a vulnerability breach within a system's protection strategy, which has the potential for loss, damage or destruction of assets. Consequently, every vulnerability has an accompanying risk, which is defined as the "intersection of assets, threats, and vulnerabilities" [1]. This research project aims to experimentally compare the similarity-based ranking of cyber security information utilising a recommendation environment. The Memory-Based Collaborative Filtering technique was employed, specifically the User-Based and Item-Based approaches. These systems utilised information from the National Vulnerability Database, specifically for the identification and similarity-based ranking of cyber-security vulnerability information, relating to hardware and software applications. Experiments were performed using the Item-Based technique, to identify the optimum system parameters, evaluated through the AUC evaluation metric. Once identified, the Item-Based technique was compared with the User-Based technique which utilised the parameters identified from the previous experiments. During these experiments, the Pearson's Correlation Coefficient and the Cosine similarity measure was used. From these experiments, it was identified that utilised the Item-Based technique which employed the Cosine similarity measure, an AUC evaluation metric of 0.80225 was achieved.

2017-10-25
Mallik, Nilanjan, Wali, A. S., Kuri, Narendra.  2016.  Damage Location Identification Through Neural Network Learning from Optical Fiber Signal for Structural Health Monitoring. Proceedings of the 5th International Conference on Mechatronics and Control Engineering. :157–161.

Present work deals with prediction of damage location in a composite cantilever beam using signal from optical fiber sensor coupled with a neural network with back propagation based learning mechanism. The experimental study uses glass/epoxy composite cantilever beam. Notch perpendicular to the axis of the beam and spanning throughout the width of the beam is introduced at three different locations viz. at the middle of the span, towards the free end of the beam and towards the fixed end of the beam. A plastic optical fiber of 6 cm gage length is mounted on the top surface of the beam along the axis of the beam exactly at the mid span. He-Ne laser is used as light source for the optical fiber and light emitting from other end of the fiber is converted to electrical signal through a converter. A three layer feed forward neural network architecture is adopted having one each input layer, hidden layer and output layer. Three features are extracted from the signal viz. resonance frequency, normalized amplitude and normalized area under resonance frequency. These three features act as inputs to the neural network input layer. The outputs qualitatively identify the location of the notch.