Visible to the public Biblio

Filters: Keyword is ocl  [Clear All Filters]
2019-12-30
Peldszus, Sven, Strüber, Daniel, Jürjens, Jan.  2018.  Model-Based Security Analysis of Feature-Oriented Software Product Lines. Proceedings of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences. :93-106.
Today's software systems are too complex to ensure security after the fact – security has to be built into systems by design. To this end, model-based techniques such as UMLsec support the design-time specification and analysis of security requirements by providing custom model annotations and checks. Yet, a particularly challenging type of complexity arises from the variability of software product lines. Analyzing the security of all products separately is generally infeasible. In this work, we propose SecPL, a methodology for ensuring security in a software product line. SecPL allows developers to annotate the system design model with product-line variability and security requirements. To keep the exponentially large configuration space tractable during security checks, SecPL provides a family-based security analysis. In our experiments, this analysis outperforms the naive strategy of checking all products individually. Finally, we present the results of a user study that indicates the usability of our overall methodology.
2018-05-16
Abdellatif, Lasbahani, Chhiba, Mostafa, Mjihil, Oussama.  2017.  Deals with Integrating of Security Specifications During Software Design Phase Using MDA Approach. Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing. :196:1–196:7.
There are many recent propositions treating Model Driven Architecture (MDA) approaches to perform and automate code generation from design models. To the best of our knowledge and research, most of these propositions have been only focused on functional aspect by allowing code generation without considering this the non-functional aspect at the same time so that to generate secure object-oriented software basing on MDA approach. In this context, we are adding further details to integrate the security policies required in the form of secure models. The systems specification models will be enhanced with security requirements at different abstraction levels through a set of transformation models. Improving functional models with security constraints allow us to incorporate the security needs and automating generating secure applications with their security infrastructure using MDA approach. After carrying out a modification on MDA processes and UML meta-model to cover a better representation of security policies of an organization by updating different existing software engineering process to take into account nonfunctional aspect along with their functional aspect. This work presents a new methodology based on MDA approach and existing security technologies for allowing the integration of the proposed security requirements, which are obtained from security experts, during the system design. Within this context, we have focused on the essential elements of security, such as data encryption, Message Integrity, and Access Control in order to express the importance of merging both the functional and non-functional aspects altogether. We have chosen these properties to practically illustrate how to generate secure applications including their security policies. Then the source code will be obtained automatically from Platform Specific Models (PSM) by applying a set of model transformations and using a code generator designed for this mission. In addition, we can inject also other security-related properties, such as Availability, Traceability, non-repudiation, and Scalability issues during the whole development process by following the same methodology. these properties will be treated in the future work.
2017-10-25
Ben Fadhel, Ameni, Bianculli, Domenico, Briand, Lionel, Hourte, Benjamin.  2016.  A Model-driven Approach to Representing and Checking RBAC Contextual Policies. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :243–253.

Among the various types of Role-based access control (RBAC) policies proposed in the literature, contextual policies take into account the user's location and the time at which she requests an access. The precise characterization of the context in such policies and the definition of an access decision procedure for them are non-trivial ntasks, since they have to take into account the various facets of the temporal and spatial expressions occurring in these policies. Existing approaches for modeling contextual policies do not support all the various spatio-temporal concepts and often do not provide an access decision procedure. In this paper, we propose a model-driven approach to representing and checking RBAC contextual policies. We introduce GemRBAC+CTX, an extension of a generalized conceptual model for RBAC, which contains all the concepts required to model contextual policies. We formalize these policies as constraints, using the Object Constraint Language (OCL), on the GemRBAC+CTX model, as a way to operationalize the access decision for user's requests using model-driven technologies. We show the application of GemRBAC+CTX to model the RBAC contextual policies of an application developed by HITEC Luxembourg, a provider of situational-aware information management systems for emergency scenarios. The use of GemRBAC+CTX has allowed the engineers of HITEC to define several new types of contextual policies, with a fine-grained, precise description of contexts. The preliminary experimental results show the feasibility of applying our model-driven approach for making access decisions in real systems.