Visible to the public Biblio

Filters: Keyword is security engineering  [Clear All Filters]
2021-07-28
Aigner, Andreas, Khelil, Abdelmajid.  2020.  A Scoring System to Efficiently Measure Security in Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1141—1145.
The importance of Cyber-Physical Systems (CPS) gains more and more weight in our daily business and private life. Although CPS build the backbone for major trends, like Industry 4.0 and connected vehicles, they also propose many new challenges. One major challenge can be found in achieving a high level of security within such highly connected environments, in which an unpredictable number of heterogeneous systems with often-distinctive characteristics interact with each other. In order to develop high-level security solutions, system designers must eventually know the current level of security of their specification. To this end, security metrics and scoring frameworks are essential, as they quantitatively express security of a given design or system. However, existing solutions may not be able to handle the proposed challenges of CPS, as they mainly focus on one particular system and one specific attack. Therefore, we aim to elaborate a security scoring mechanism, which can efficiently be used in CPS, while considering all essential information. We break down each system within the CPS into its core functional blocks and analyze a variety of attacks in terms of exploitability, scalability of attacks, as well as potential harm to targeted assets. With this approach, we get an overall assessment of security for the whole CPS, as it integrates the security-state of all interacting systems. This allows handling the presented complexity in CPS in a more efficient way, than existing solutions.
2021-03-29
Aigner, A., Khelil, A..  2020.  An Effective Semantic Security Metric for Industrial Cyber-Physical Systems. 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). 1:87—92.

The emergence of Industrial Cyber-Physical Systems (ICPS) in today's business world is still steadily progressing to new dimensions. Although they bring many new advantages to business processes and enable automation and a wider range of service capability, they also propose a variety of new challenges. One major challenge, which is introduced by such System-of-Systems (SoS), lies in the security aspect. As security may not have had that significant role in traditional embedded system engineering, a generic way to measure the level of security within an ICPS would provide a significant benefit for system engineers and involved stakeholders. Even though many security metrics and frameworks exist, most of them insufficiently consider an SoS context and the challenges of such environments. Therefore, we aim to define a security metric for ICPS, which measures the level of security during the system design, tests, and integration as well as at runtime. For this, we try to focus on a semantic point of view, which on one hand has not been considered in security metric definitions yet, and on the other hand allows us to handle the complexity of SoS architectures. Furthermore, our approach allows combining the critical characteristics of an ICPS, like uncertainty, required reliability, multi-criticality and safety aspects.

2018-02-02
Whitmore, J., Tobin, W..  2017.  Improving Attention to Security in Software Design with Analytics and Cognitive Techniques. 2017 IEEE Cybersecurity Development (SecDev). :16–21.

There is widening chasm between the ease of creating software and difficulty of "building security in". This paper reviews the approach, the findings and recent experiments from a seven-year effort to enable consistency across a large, diverse development organization and software portfolio via policies, guidance, automated tools and services. Experience shows that developing secure software is an elusive goal for most. It requires every team to know and apply a wide range of security knowledge in the context of what software is being built, how the software will be used, and the projected threats in the environment where the software will operate. The drive for better outcomes for secure development and increased developer productivity led to experiments to augment developer knowledge and eventually realize the goal of "building the right security in".

2017-11-01
Jasser, Stefanie, Riebisch, Matthias.  2016.  Reusing Security Solutions: A Repository for Architectural Decision Support. Proccedings of the 10th European Conference on Software Architecture Workshops. :40:1–40:7.
Today, the interplay of security design and architecting is still poorly understood and architects lack knowledge about security and architectural security design. Yet, architectural knowledge on security design and its impact on other architectural properties is essential for making right decisions in architecture design. Knowledge is covered within solutions such as architectural patterns, tactics, and tools. Sharing it including the experience other architects gained using these solutions would enable better reuse of security solutions. In this paper, we present a repository for security solutions that supports architectural decisions including quality goal trade-offs. Its metamodel was adapted to special demands of security as a quality goal. The repository supports architecture decisions not only through populating approved solutions but through a recommender system that documents knowledge and experiences of architecture and security experts. We provide a case study to illustrate the repository's features and its application during architecture design.