Visible to the public Biblio

Filters: Keyword is Cypher  [Clear All Filters]
2020-01-21
Hao, Kongzhang, Yang, Zhengyi, Lai, Longbin, Lai, Zhengmin, Jin, Xin, Lin, Xuemin.  2019.  PatMat: A Distributed Pattern Matching Engine with Cypher. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. :2921–2924.
Graph pattern matching is one of the most fundamental problems in graph database and is associated with a wide spectrum of applications. Due to its computational intensiveness, researchers have primarily devoted their efforts to improving the performance of the algorithm while constraining the graphs to have singular labels on vertices (edges) or no label. Whereas in practice graphs are typically associated with rich properties, thus the main focus in the industry is instead on powerful query languages that can express a sufficient number of pattern matching scenarios. We demo PatMat in this work to glue together the academic efforts on performance and the industrial efforts on expressiveness. To do so, we leverage the state-of-the-art join-based algorithms in the distributed contexts and Cypher query language - the most widely-adopted declarative language for graph pattern matching. The experiments demonstrate how we are capable of turning complex Cypher semantics into a distributed solution with high performance.
2017-11-03
Ronczka, J..  2016.  Backchanneling Quantum Bit (Qubit) 'Shuffling': Quantum Bit (Qubit) 'Shuffling' as Added Security by Slipstreaming Q-Morse. 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). :106–115.

A fresh look at the way secure communications is currently being done has been undertaken as a consequence of the large hacking's that have taken place recently. A plausible option maybe a return to the future via Morse code using how a quantum bit (Qubit) reacts when entangled to suggest a cypher. This quantum cyphers uses multiple properties of unique entities that have many random radicals which makes hacking more difficult that traditional 'Rivest-Shamir-Adleman' (RSA), 'Digital Signature Algorithm' (DSA) or 'Elliptic Curve Digital Signature Algorithm' (ECDSA). Additional security is likely by Backchannelling (slipstreaming) Quantum Morse code (Q-Morse) keys composed of living and non-living entities. This means Blockchain ledger history (forwards-backwards) is audited during an active session. Verification keys are Backchannelling (slipstreaming) during the session (e.g. train driver must incrementally activate a switch otherwise the train stops) using predicted-expected sender-receiver properties as well as their past history of disconformities to random radicals encountered. In summary, Quantum Morse code (Q-Morse) plausibly is the enabler to additional security by Backchannelling (slipstreaming) during a communications session.