Biblio
Mobile communication networks connect much of the world's population. The security of users' calls, SMSs, and mobile data depends on the guarantees provided by the Authenticated Key Exchange protocols used. For the next-generation network (5G), the 3GPP group has standardized the 5G AKA protocol for this purpose. We provide the first comprehensive formal model of a protocol from the AKA family: 5G AKA. We also extract precise requirements from the 3GPP standards defining 5G and we identify missing security goals. Using the security protocol verification tool Tamarin, we conduct a full, systematic, security evaluation of the model with respect to the 5G security goals. Our automated analysis identifies the minimal security assumptions required for each security goal and we find that some critical security goals are not met, except under additional assumptions missing from the standard. Finally, we make explicit recommendations with provably secure fixes for the attacks and weaknesses we found.
Fast, accurate three dimensional reconstructions of plasma equilibria, crucial for physics interpretation of fusion data generated within confinement devices like stellarators/ tokamaks, are computationally very expensive and routinely require days, even weeks, to complete using serial approaches. Here, we present a parallel implementation of the three dimensional plasma reconstruction code, V3FIT. A formal analysis to identify the performance bottlenecks and scalability limits of this new parallel implementation, which combines both task and data parallelism, is presented. The theoretical findings are supported by empirical performance results on several thousands of processor cores of a Cray XC30 supercomputer. Parallel V3FIT is shown to deliver over 40X speedup, enabling fusion scientists to carry out three dimensional plasma equilibrium reconstructions at unprecedented scales in only a few hours (instead of in days/weeks) for the first time.
Blockchain is an integrated technology to ensure keeping record and process transactions with decentralized manner. It is thought as the foundation of future decentralized ecosystem, and collects much attention. However, the maturity of this technology including security of the fundamental protocol and its applications is not enough, thus we need more research on the security evaluation and verification of Blockchain technology This tutorial explains the current status of the security of this technology, its security layers and possibility of application of formal analysis and verification.
This paper presents a possible solution to a fundamental limitation facing all blockchain-based systems; scalability. We propose a temporal rolling blockchain which solves the problem of its current exponential growth, instead replacing it with a constant fixed-size blockchain. We conduct a thorough analysis of related work and present a formal analysis of the new rolling blockchain, comparing the results to a traditional blockchain model to demonstrate that the deletion of data from the blockchain does not impact on the security of the proposed blockchain model before concluding our work and presenting future work to be conducted.