Visible to the public Biblio

Filters: Keyword is peer-to-peer  [Clear All Filters]
2023-02-03
Firdaus, Taufiq Maulana, Lubis, Fahdi Saidi, Lubis, Muharman.  2022.  Financial Technology Risk Analysis for Peer to Peer Lending Process: A Case Study of Sharia Aggregator Financial Technology. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :1–4.
Financial technology (Fintech) is an amalgamation of financial management using a technology system. Fintech has become a public concern because this service provides many service features to make it easier from the financial side, such as being used in cooperative financial institutions, banking and insurance. This paper will analyze the opportunities and challenges of Fintech sharia in Indonesia. By exploring the existing literature, this article will try to answer that question. This research is carried out using a literature review approach and comparative qualitative method which will determined the results of the SWOT analysis of sharia financial technology in indonesia. It is needed to mitigate risk of funding in a peer to peer method in overcoming the security of funds and data from investors, firstly companies can perform transparency on the clarity of investor funds. This is done as one of the facilities provided to investors in the Fintech application. In the future, it is hoped that in facing competition, sharia-based fintech companies must be able to provide targeted services through the socialization of sharia fintech to the public, both online and offline. Investors are expected to be more careful before investing in choosing Fintech Peer to Peer (P2P) Lending services by checking the list of Fintech lending and lending companies registered and found by the Financial Services Authority (OJK).
ISSN: 2770-159X
2022-09-30
Stokkink, Quinten, Ishmaev, Georgy, Epema, Dick, Pouwelse, Johan.  2021.  A Truly Self-Sovereign Identity System. 2021 IEEE 46th Conference on Local Computer Networks (LCN). :1–8.
Existing digital identity management systems fail to deliver the desirable properties of control by the users of their own identity data, credibility of disclosed identity data, and network-level anonymity. The recently proposed Self-Sovereign Identity (SSI) approach promises to give users these properties. However, we argue that without addressing privacy at the network level, SSI systems cannot deliver on this promise. In this paper we present the design and analysis of our solution TCID, created in collaboration with the Dutch government. TCID is a system consisting of a set of components that together satisfy seven functional requirements to guarantee the desirable system properties. We show that the latency incurred by network-level anonymization in TCID is significantly larger than that of identity data disclosure protocols but is still low enough for practical situations. We conclude that current research on SSI is too narrowly focused on these data disclosure protocols.
2022-02-25
Pandey, Manish, Kwon, Young-Woo.  2021.  Middleware for Edge Devices in Mobile Edge Computing. 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :1—4.
In mobile edge computing, edge devices collect data, and an edge server performs computational or data processing tasks that need real-time processing. Depending upon the requested task's complexity, an edge server executes it locally or remotely in the cloud. When an edge server needs to offload its computational tasks, there could be a sudden failure in the cloud or network. In this scenario, we need to provide a flexible execution model to edge devices and servers for the continuous execution of the task. To that end, in this paper, we induced a middleware system that allows an edge server to execute a task on the edge devices instead of offloading it to a cloud server. Edge devices not only send data to an edge server for further processing but also execute edge services by utilizing nearby edge devices' computing resources. We extend the concept of service-oriented architecture and integrate a decentralized peer-to-peer network architecture to achieve reusability, location-specific security, and reliability. By following our methodology, software developers can enhance their application in a collaborative environment without worrying about low-level implementation.
2022-02-22
Nimer, Lina, Tahat, Ashraf.  2021.  Implementation of a Peer-to-Peer Network Using Blockchain to Manage and Secure Electronic Medical Records. 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :187—192.
An electronic medical record (EMR) is the digital medical data of a patient, and they are healthcare system's most valuable asset. In this paper, we introduce a decentralized network using blockchain technology and smart contracts as a solution to manage and secure medical records storing, and transactions between medical healthcare providers. Ethereum blockchain is employed to build the blockchain. Solidity object-oriented language was utilized to implement smart contracts to digitally facilitate and verify transactions across the network (creating records, access requests, permitting access, revoking access, rejecting access). This will mitigate prevailing issues of current systems and enhance their performance, since current EMRs are stored on a centralized database, which cannot guarantee data integrity and security, consequently making them susceptible to malicious attacks. Our proposed system approach is of vital importance considering that healthcare providers depend on various tests in making a decision about a patient's diagnosis, and the respective plan of treatment they will go through. These tests are not shared with other providers, while data is scattered on various systems, as a consequence of these ensuing scenarios, patients suffer of the resulting care provided. Moreover, blockchain can meliorate the motley serious challenges caused by future use of IoT devices that provide real-time data from patients. Therefore, integrating the two technologies will produce decentralized IoT based healthcare systems.
Musa, Ahmad Sanda, Awan, Irfan-Ullah, Abobaker, Ibrahim.  2021.  Efficacy of ADDIE Model in Peer-to-Peer Networks: Digital Evidence Investigation. 2021 8th International Conference on Future Internet of Things and Cloud (FiCloud). :177—183.
While the need for content distribution proliferates - becoming more mammoth and complex on the Internet - the P2P network perseveres as one of the best avenues to service the demand for content distribution. It enjoys a wide range of clients that transport data in bits securely, making it susceptible to moving dubious contents, hence becoming exposed to varying security threats that require credible digital investigation to address. The tools and techniques used in performing digital investigations are still mostly lagging, successfully slowing down law enforcement agencies in general. The acquisition of digital evidence over the Internet is still elusive in the battle against cybercrime. This paper considers a new technique for detecting passive peers that participate in a P2P network. As part of our study, we crawled the µTorrent P2P client over 10 days while logging all participating peers. We then employed digital forensic techniques to analyze the popular users and generate evidence within them with high accuracy. Finally, we evaluated our proposed approach against the standard Analysis, Design, Development, Implementation, and Evaluation, or ADDIE model for digital investigation to arrive at the credible digital evidence presented in this paper.
2021-10-04
Benanti, F., Sanseverino, E. Riva, Sciumè, G., Zizzo, G..  2020.  A Peer-to-Peer Market Algorithm for a Blockchain Platform. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
In an era of technological revolution in which everything becomes smarter and connected, the blockchain can introduce a new model for energy transactions able to grant more simplicity, security and transparency for end-users. The blockchain technology is characterized by a distributed architecture without a trusted and centralized authority, and, therefore, it appears as the perfect solutions for managing exchanges between peers. In this paper, a market algorithm that can be easily transferred to a smart contract for maximizing the match between produced and consumed energy in a micro-grid is presented. The algorithm supports energy transactions between peers (both producers and consumers) and could be one of the main executables implemented using a blockchain platform. The case study presented in this paper shows how the end-users through the blockchain could select among the possible energy transactions those more suitable to offer specific ancillary services to the grid operator without involving the grid operator itself or a third-party aggregator.
2019-11-26
Acharjamayum, Irani, Patgiri, Ripon, Devi, Dhruwajita.  2018.  Blockchain: A Tale of Peer to Peer Security. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :609-617.

The underlying or core technology of Bitcoin cryptocurrency has become a blessing for human being in this era. Everything is gradually changing to digitization in this today's epoch. Bitcoin creates virtual money using Blockchain that's become popular over the world. Blockchain is a shared public ledger, and it includes all transactions which are confirmed. It is almost impossible to crack the hidden information in the blocks of the Blockchain. However, there are certain security and technical challenges like scalability, privacy leakage, selfish mining, etc. which hampers the wide application of Blockchain. In this paper, we briefly discuss this emerging technology namely Blockchain. In addition, we extrapolate in-depth insight on Blockchain technology.

2017-11-03
Dennis, R., Owenson, G., Aziz, B..  2016.  A Temporal Blockchain: A Formal Analysis. 2016 International Conference on Collaboration Technologies and Systems (CTS). :430–437.

This paper presents a possible solution to a fundamental limitation facing all blockchain-based systems; scalability. We propose a temporal rolling blockchain which solves the problem of its current exponential growth, instead replacing it with a constant fixed-size blockchain. We conduct a thorough analysis of related work and present a formal analysis of the new rolling blockchain, comparing the results to a traditional blockchain model to demonstrate that the deletion of data from the blockchain does not impact on the security of the proposed blockchain model before concluding our work and presenting future work to be conducted.