Biblio
Current software platforms for service composition are based on orchestration, choreography or hierarchical orchestration. However, such approaches for service composition only support partial compositionality; thereby, increasing the complexity of SOA development. In this paper, we propose DX-MAN, a platform that supports total compositionality. We describe the main concepts of DX-MAN with the help of a case study based on the popular MusicCorp.
WBANs integrate wearable and implanted devices with wireless communication and information processing systems to monitor the well-being of an individual. Various MAC (Medium Access Control) protocols with different objectives have been proposed for WBANs. The fact that any flaw in these critical systems may lead to the loss of one's life implies that testing and verifying MAC's protocols for such systems are on the higher level of importance. In this paper, we firstly propose a high-level formal and scalable model with timing aspects for a MAC protocol particularly designed for WBANs, named S-TDMA (Statistical frame based TDMA protocol). The protocol uses TDMA (Time Division Multiple Access) bus arbitration, which requires temporal aspect modeling. Secondly, we propose a formal validation of several relevant properties such as deadlock freedom, fairness and mutual exclusion of this protocol at a high level of abstraction. The protocol was modeled using a composition of timed automata components, and verification was performed using a real-time model checker.
Service composition is currently done by (hierarchical) orchestration and choreography. However, these approaches do not support explicit control flow and total compositionality, which are crucial for the scalability of service-oriented systems. In this paper, we propose exogenous connectors for service composition. These connectors support both explicit control flow and total compositionality in hierarchical service composition. To validate and evaluate our proposal, we present a case study based on the popular MusicCorp.
Blockchain is an emerging technology for decentralized and transactional data sharing across a large network of untrusted participants. It enables new forms of distributed software architectures, where components can find agreements on their shared states without trusting a central integration point or any particular participating components. Considering the blockchain as a software connector helps make explicitly important architectural considerations on the resulting performance and quality attributes (for example, security, privacy, scalability and sustainability) of the system. Based on our experience in several projects using blockchain, in this paper we provide rationales to support the architectural decision on whether to employ a decentralized blockchain as opposed to other software solutions, like traditional shared data storage. Additionally, we explore specific implications of using the blockchain as a software connector including design trade-offs regarding quality attributes.