Biblio
In this article, the writers suggested a scheme for analyzing the optimum crop cultivation based on Fuzzy Logic Network (Implementation of Fuzzy Logic Control in Predictive Analysis and Real Time Monitoring of Optimum Crop Cultivation) knowledge. The Fuzzy system is Fuzzy Logic's set. By using the soil, temperature, sunshine, precipitation and altitude value, the scheme can calculate the output of a certain crop. By using this scheme, the writers hope farmers can boost f arm output. This, thus will have an enormous effect on alleviating economical deficiency, strengthening rate of employment, the improvement of human resources and food security.
Automobiles provide comfort and mobility to owners. While they make life more meaningful they also pose challenges and risks in their safety and security mechanisms. Some modern automobiles are equipped with anti-theft systems and enhanced safety measures to safeguard its drivers. But at times, these mechanisms for safety and secured operation of automobiles are insufficient due to various mechanisms used by intruders and car thieves to defeat them. Drunk drivers cause accidents on our roads and thus the need to safeguard the driver when he is intoxicated and render the car to be incapable of being driven. These issues merit an integrated approach to safety and security of automobiles. In the light of these challenges, an integrated microcontroller-based hardware and software system for safety and security of automobiles to be fixed into existing vehicle architecture, was designed, developed and deployed. The system submodules are: (1) Two-step ignition for automobiles, namely: (a) biometric ignition and (b) alcohol detection with engine control, (2) Global Positioning System (GPS) based vehicle tracking and (3) Multisensor-based fire detection using neuro-fuzzy logic. All submodules of the system were implemented using one microcontroller, the Arduino Mega 2560, as the central control unit. The microcontroller was programmed using C++11. The developed system performed quite well with the tests performed on it. Given the right conditions, the alcohol detection subsystem operated with a 92% efficiency. The biometric ignition subsystem operated with about 80% efficiency. The fire detection subsystem operated with a 95% efficiency in locations registered with the neuro-fuzzy system. The vehicle tracking subsystem operated with an efficiency of 90%.
A general approach to the synthesis of the conditionally unstable fuzzy controller is introduced in this paper. This approach allows tuning the output signal of the system for both fast and smooth transient. Fuzzy logic allows combining the properties of several strategies of system tuning dependent on the state of the system. The utilization of instability allows achieving faster transient when the error of the system output is beyond the predefined value. Later the system roots are smoothly moved to the left-hand side of the complex s-plane due to the change of the membership function values. The results of the proposed approaches are compared with the results obtained using traditional methods of controller synthesis.
In the open network environment, the strange entities can establish the mutual trust through Automated Trust Negotiation (ATN) that is based on exchanging digital credentials. In traditional ATN, the attribute certificate required to either satisfied or not, and in the strategy, the importance of the certificate is same, it may cause some unnecessary negotiation failure. And in the actual situation, the properties is not just 0 or 1, it is likely to between 0 and 1, so the satisfaction degree is different, and the negotiation strategy need to be quantified. This paper analyzes the fuzzy negotiation process, in order to improve the trust establishment in high efficiency and accuracy further.
Phishing emails have affected users seriously due to the enormous increasing in numbers and exquisite camouflage. Users spend much more effort on distinguishing the email properties, therefore current phishing email detection system demands more creativity and consideration in filtering for users. The proposed research tries to adopt creative computing in detecting phishing emails for users through a combination of computing techniques and social engineering concepts. In order to achieve the proposed target, the fraud type is summarised in social engineering criteria through literature review; a semantic web database is established to extract and store information; a fuzzy logic control algorithm is constructed to allocate email categories. The proposed approach will help users to distinguish the categories of emails, furthermore, to give advice based on different categories allocation. For the purpose of illustrating the approach, a case study will be presented to simulate a phishing email receiving scenario.
Automated server parameter tuning is crucial to performance and availability of Internet applications hosted in cloud environments. It is challenging due to high dynamics and burstiness of workloads, multi-tier service architecture, and virtualized server infrastructure. In this paper, we investigate automated and agile server parameter tuning for maximizing effective throughput of multi-tier Internet applications. A recent study proposed a reinforcement learning based server parameter tuning approach for minimizing average response time of multi-tier applications. Reinforcement learning is a decision making process determining the parameter tuning direction based on trial-and-error, instead of quantitative values for agile parameter tuning. It relies on a predefined adjustment value for each tuning action. However it is nontrivial or even infeasible to find an optimal value under highly dynamic and bursty workloads. We design a neural fuzzy control based approach that combines the strengths of fast online learning and self-adaptiveness of neural networks and fuzzy control. Due to the model independence, it is robust to highly dynamic and bursty workloads. It is agile in server parameter tuning due to its quantitative control outputs. We implemented the new approach on a testbed of virtualized data center hosting RUBiS and WikiBench benchmark applications. Experimental results demonstrate that the new approach significantly outperforms the reinforcement learning based approach for both improving effective system throughput and minimizing average response time.
Wireless mesh networks (WMNs) are attracting more and more real time applications. This kind of applications is constrained in terms of Quality of Service (QoS). Existing works in this area are mostly designed for mobile ad hoc networks, which, unlike WMNs, are mainly sensitive to energy and mobility. However, WMNs have their specific characteristics (e.g. static routers and heavy traffic load), which require dedicated QoS protocols. This paper proposes a novel traffic regulation scheme for multimedia support in WMNs. The proposed scheme aims to regulate the traffic sending rate according to the network state, based on the buffer evolution at mesh routers and on the priority of each traffic type. By monitoring the buffer evolution at mesh routers, our scheme is able to predict possible congestion, or QoS violation, early enough before their occurrence; each flow is then regulated according to its priority and to its QoS requirements. The idea behind the proposed scheme is to maintain lightly loaded buffers in order to minimize the queuing delays, as well as, to avoid congestion. Moreover, the regulation process is made smoothly in order to ensure the continuity of real time and interactive services. We use the interval type-2 fuzzy logic system (IT2 FLS), known by its adequacy to uncertain environments, to make suitable regulation decisions. The performance of our scheme is proved through extensive simulations in different network and traffic load scales.
This paper proposes a cooperative continuous ant colony optimization (CCACO) algorithm and applies it to address the accuracy-oriented fuzzy systems (FSs) design problems. All of the free parameters in a zero- or first-order Takagi-Sugeno-Kang (TSK) FS are optimized through CCACO. The CCACO algorithm performs optimization through multiple ant colonies, where each ant colony is only responsible for optimizing the free parameters in a single fuzzy rule. The ant colonies cooperate to design a complete FS, with a complete parameter solution vector (encoding a complete FS) that is formed by selecting a subsolution component (encoding a single fuzzy rule) from each colony. Subsolutions in each ant colony are evolved independently using a new continuous ant colony optimization algorithm. In the CCACO, solutions are updated via the techniques of pheromone-based tournament ant path selection, ant wandering operation, and best-ant-attraction refinement. The performance of the CCACO is verified through applications to fuzzy controller and predictor design problems. Comparisons with other population-based optimization algorithms verify the superiority of the CCACO.