Biblio
Cybersecurity is a major issue today. It is predicted that cybercrime will cost the world \$6 trillion annually by 2021. It is important to make logins secure as well as to make advances in security in order to catch cybercriminals. This paper will design and create a device that will use Fuzzy logic to identify a person by the rhythm and frequency of their typing. The device will take data from a user from a normal password entry session. This data will be used to make a Fuzzy system that will be able to identify the user by their typing speed. An application of this project could be used to make a more secure log-in system for a user. The log-in system would not only check that the correct password was entered but also that the rhythm of how the password was typed matched the user. Another application of this system could be used to help catch cybercriminals. A cybercriminal may have a certain rhythm at which they type at and this could be used like a fingerprint to help officials locate cybercriminals.
The need to enhance the performance of existing transmission network in line with economic and technical constraints is crucial in a competitive market environment. This paper models the total transfer capacity (TTC) improvement using optimally placed thyristor-controlled series capacitors (TCSC). The system states were evaluated using distributed slack bus (DSB) and continuous power flow (CPF) techniques. Adaptable logic relations was modelled based on security margin (SM), steady state and transient condition collapse voltages (Uss, Uts) and the steady state line power loss (Plss), through which line suitability index (LSI) were obtained. The fuzzy expert system (FES) membership functions (MF) with respective degrees of memberships are defined to obtain the best states. The LSI MF is defined high between 0.2-0.8 to provide enough protection under transient disturbances. The test results on IEEE 30 bus system show that the model is feasible for TTC enhancement under steady state and N-1 conditions.
Smart Grid cyber-security sounds to be a critical issue, because of widespread development of information technology. To achieve secure and reliable operation, the complexity of human automation interaction (HAI) necessitates more sophisticated and intelligent methodologies. In this paper, an adaptive autonomy fuzzy expert system is developed using gradient descent algorithm to determine the Level of Automation (LOA), based on the changing of Performance Shaping Factors (PSF). These PSFs indicate the effects of environmental conditions on the performance of HAI. The major advantage of this method is that the fuzzy rule or membership function can be learnt without changing the form of the fuzzy rule in conventional fuzzy control. Because of data shortage, Leave-One-Out Cross-Validation (LOOCV) technique is applied for assessing how the results of proposed system generalizes to the new contingency situations. The expert system database is extracted from superior experts' judgments. In order to regard the importance of each PSF, weighted rules are also considered. In addition, some new environmental conditions are introduced that has not been seen before. Nine scenarios are discussed to reveal the performance of the proposed system. Results confirm that the presented fuzzy expert system can effectively calculates the proper LOA even in the new contingency situations.
This paper proposes a compensation control scheme against DoS attack for nonlinear cyber-physical systems (CPSs). The dynamical process of the nonlinear CPSs are described by T-S fuzzy model that regulated by the corresponding fuzzy rules. The communication link between the controller and the actuator under consideration may be unreliable, where Denialof-Service (DoS) attack is supposed to invade the communication link randomly. To compensate the negative effect caused by DoS attack, a compensation control scheme is designed to maintain the stability of the closed-loop system. With the aid of the Lyapunov function theory, a sufficient condition is established to ensure the stochastic stability and strict dissipativity of the closed-loop system. Finally, an iterative linearization algorithm is designed to determine the controller gain and the effectiveness of the proposed approach is evaluated through simulations.
Dynamic Fuzzy Rule Interpolation (D-FRI) offers a dynamic rule base for fuzzy systems which is especially useful for systems with changing requirements and limited prior knowledge. This suggests a possible application of D-FRI in the area of network security due to the volatility of the traffic. A honeypot is a valuable tool in the field of network security for baiting attackers and collecting their information. However, typically designed with fewer resources they are not considered as a primary security tool for use in network security. Consequently, such honeypots can be vulnerable to many security attacks. One such attack is a spoofing attack which can cause severe damage to the honeypot, making it inefficient. This paper presents a vigilant dynamic honeypot based on the D-FRI approach for use in predicting and alerting of spoofing attacks on the honeypot. First, it proposes a technique for spoofing attack identification based on the analysis of simulated attack data. Then, the paper employs the identification technique to develop a D-FRI based vigilant dynamic honeypot, allowing the honeypot to predict and alert that a spoofing attack is taking place in the absence of matching rules. The resulting system is capable of learning and maintaining a dynamic rule base for more accurate identification of potential spoofing attacks with respect to the changing traffic conditions of the network.
Security and making trust is the first step toward development in both real and virtual societies. Internet-based development is inevitable. Increasing penetration of technology in the internet banking and its effectiveness in contributing to banking profitability and prosperity requires that satisfied customers turn into loyal customers. Currently, a large number of cyber attacks have been focused on online banking systems, and these attacks are considered as a significant security threat. Banks or customers might become the victim of the most complicated financial crime, namely internet fraud. This study has developed an intelligent system that enables detecting the user's abnormal behavior in online banking. Since the user's behavior is associated with uncertainty, the system has been developed based on the fuzzy theory, This enables it to identify user behaviors and categorize suspicious behaviors with various levels of intensity. The performance of the fuzzy expert system has been evaluated using an receiver operating characteristic curve, which provides the accuracy of 94%. This expert system is optimistic to be used for improving e-banking services security and quality.
This paper proposes a cooperative continuous ant colony optimization (CCACO) algorithm and applies it to address the accuracy-oriented fuzzy systems (FSs) design problems. All of the free parameters in a zero- or first-order Takagi-Sugeno-Kang (TSK) FS are optimized through CCACO. The CCACO algorithm performs optimization through multiple ant colonies, where each ant colony is only responsible for optimizing the free parameters in a single fuzzy rule. The ant colonies cooperate to design a complete FS, with a complete parameter solution vector (encoding a complete FS) that is formed by selecting a subsolution component (encoding a single fuzzy rule) from each colony. Subsolutions in each ant colony are evolved independently using a new continuous ant colony optimization algorithm. In the CCACO, solutions are updated via the techniques of pheromone-based tournament ant path selection, ant wandering operation, and best-ant-attraction refinement. The performance of the CCACO is verified through applications to fuzzy controller and predictor design problems. Comparisons with other population-based optimization algorithms verify the superiority of the CCACO.