Visible to the public Biblio

Filters: Keyword is secure elements  [Clear All Filters]
2019-03-11
Hoeller, A., Toegl, R..  2018.  Trusted Platform Modules in Cyber-Physical Systems: On the Interference Between Security and Dependability. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :136–144.

Cyber physical systems are the key innovation driver for many domains such as automotive, avionics, industrial process control, and factory automation. However, their interconnection potentially provides adversaries easy access to sensitive data, code, and configurations. If attackers gain control, material damage or even harm to people must be expected. To counteract data theft, system manipulation and cyber-attacks, security mechanisms must be embedded in the cyber physical system. Adding hardware security in the form of the standardized Trusted Platform Module (TPM) is a promising approach. At the same time, traditional dependability features such as safety, availability, and reliability have to be maintained. To determine the right balance between security and dependability it is essential to understand their interferences. This paper supports developers in identifying the implications of using TPMs on the dependability of their system.We highlight potential consequences of adding TPMs to cyber-physical systems by considering the resulting safety, reliability, and availability. Furthermore, we discuss the potential of enhancing the dependability of TPM services by applying traditional redundancy techniques.

2017-11-13
Urien, P..  2016.  Three Innovative Directions Based on Secure Elements for Trusted and Secured IoT Platforms. 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–2.

This paper presents the foundations of secured and trusted architecture for the Internet of Things platforms, based on Secure Elements (SE). Some IoT networks could be managed by service providers, dealing with smart grids or healthcare. Many platforms are using DTLS or TLS protocols. Therefore SEs running such stacks could provide strong mutual authentication and secure communications. Three future research directions are illustrated by previous experiments. TLS/DTLS SE servers for objects, CoAP DTLS clients for SIM modules, and RACS authorization servers based on SE TLS servers.

Shepherd, C., Arfaoui, G., Gurulian, I., Lee, R. P., Markantonakis, K., Akram, R. N., Sauveron, D., Conchon, E..  2016.  Secure and Trusted Execution: Past, Present, and Future - A Critical Review in the Context of the Internet of Things and Cyber-Physical Systems. 2016 IEEE Trustcom/BigDataSE/ISPA. :168–177.

Notions like security, trust, and privacy are crucial in the digital environment and in the future, with the advent of technologies like the Internet of Things (IoT) and Cyber-Physical Systems (CPS), their importance is only going to increase. Trust has different definitions, some situations rely on real-world relationships between entities while others depend on robust technologies to gain trust after deployment. In this paper we focus on these robust technologies, their evolution in past decades and their scope in the near future. The evolution of robust trust technologies has involved diverse approaches, as a consequence trust is defined, understood and ascertained differently across heterogeneous domains and technologies. In this paper we look at digital trust technologies from the point of view of security and examine how they are making secure computing an attainable reality. The paper also revisits and analyses the Trusted Platform Module (TPM), Secure Elements (SE), Hypervisors and Virtualisation, Intel TXT, Trusted Execution Environments (TEE) like GlobalPlatform TEE, Intel SGX, along with Host Card Emulation, and Encrypted Execution Environment (E3). In our analysis we focus on these technologies and their application to the emerging domains of the IoT and CPS.