Biblio
Continued advances in IoT technology have prompted new investigation into its usage for military operations, both to augment and complement existing military sensing assets and support next-generation artificial intelligence and machine learning systems. Under the emerging Internet of Battlefield Things (IoBT) paradigm, a multitude of operational conditions (e.g., diverse asset ownership, degraded networking infrastructure, adversary activities) necessitate the development of novel security techniques, centered on establishment of trust for individual assets and supporting resilience of broader systems. To advance current IoBT efforts, a set of research directions are proposed that aim to fundamentally address the issues of trust and trustworthiness in contested battlefield environments, building on prior research in the cybersecurity domain. These research directions focus on two themes: (1) Supporting trust assessment for known/unknown IoT assets; (2) Ensuring continued trust of known IoBT assets and systems.
With the interconnection of services and customers, network attacks are capable of large amounts of damage. Flexible Random Virtual IP Multiplexing (FRVM) is a Moving Target Defence (MTD) technique that protects against reconnaissance and access with address mutation and multiplexing. Security techniques must be trusted, however, FRVM, along with past MTD techniques, have gaps in realistic evaluation and thorough analysis of security and performance. FRVM, and two comparison techniques, were deployed on a virtualised network to demonstrate FRVM's security and performance trade-offs. The key results include the security and performance trade-offs of address multiplexing and address mutation. The security benefit of IP address multiplexing is much greater than its performance overhead, deployed on top of address mutation. Frequent address mutation significantly increases an attackers' network scan durations as well as effectively obfuscating and hiding network configurations.
Ensuring security in the military applications of IoT is a big challenge. The main reasons for this state of affairs is that the sensor nodes of the network are usually mobile, use wireless links, have a small processing power and have a little energy resources. The paper presents the solution for cryptographic protection of transmission between sensor nodes in the data link layer and for cryptographic protection of data stored in the sensor node resources. For this purpose, the Trusted Platform Module (TPM) was used. The proposed solution makes it possible to build secure and fault tolerant sensor network. The following aspects were presented in the paper: the model of such a network, applied security solutions, analysis of the security in the network and selected investigation results of such a network were presented.