Visible to the public Biblio

Filters: Keyword is fuzzy controller  [Clear All Filters]
2021-06-01
Mohammed, Alshaimaa M., Omara, Fatma A..  2020.  A Framework for Trust Management in Cloud Computing Environment. 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE). :7–13.
Cloud Computing is considered as a business model for providing IT resources as services through the Internet based on pay-as-you-go principle. These IT resources are provided by Cloud Service Providers (CSPs) and requested by Cloud Service Consumers (CSCs). Selecting the proper CSP to deliver services is a critical and strategic process. According to the work in this paper, a framework for trust management in cloud computing has been introduced. The proposed framework consists of five stages; Filtrating, Trusting, Similarity, Ranking and Monitoring. In the Filtrating stage, the existing CSPs in the system will be filtered based on their parameters. The CSPs trust values are calculated in the Trusting stage. Then, the similarity between the CSC requirements and the CSPs data is calculated in the Similarity stage. The ranking of CSPs will be performed in Ranking stage. According to the Monitoring stage, after finishing the service, the CSC sends his feedbacks about the CSP who delivered the service to be used to monitor this CSP. To evaluate the performance of the proposed framework, a comparative study has been done for the Ranking and Monitoring stages using Armor dataset. According to the comparative results it is found that the proposed framework increases the reliability and performance of the cloud environment.
2021-03-29
Bodhe, A., Sangale, A..  2020.  Network Parameter Analysis; ad hoc WSN for Security Protocol with Fuzzy Logic. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :960—963.

The wireless communication has become very vast, important and easy to access nowadays because of less cost associated and easily available mobile devices. It creates a potential threat for the community while accessing some secure information like banking passwords on the unsecured network. This proposed research work expose such a potential threat such as Rogue Access Point (RAP) detection using soft computing prediction tool. Fuzzy logic is used to implement the proposed model to identify the presence of RAP existence in the network.

2015-04-30
Chia-Feng Juang, Chi-Wei Hung, Chia-Hung Hsu.  2014.  Rule-Based Cooperative Continuous Ant Colony Optimization to Improve the Accuracy of Fuzzy System Design. Fuzzy Systems, IEEE Transactions on. 22:723-735.

This paper proposes a cooperative continuous ant colony optimization (CCACO) algorithm and applies it to address the accuracy-oriented fuzzy systems (FSs) design problems. All of the free parameters in a zero- or first-order Takagi-Sugeno-Kang (TSK) FS are optimized through CCACO. The CCACO algorithm performs optimization through multiple ant colonies, where each ant colony is only responsible for optimizing the free parameters in a single fuzzy rule. The ant colonies cooperate to design a complete FS, with a complete parameter solution vector (encoding a complete FS) that is formed by selecting a subsolution component (encoding a single fuzzy rule) from each colony. Subsolutions in each ant colony are evolved independently using a new continuous ant colony optimization algorithm. In the CCACO, solutions are updated via the techniques of pheromone-based tournament ant path selection, ant wandering operation, and best-ant-attraction refinement. The performance of the CCACO is verified through applications to fuzzy controller and predictor design problems. Comparisons with other population-based optimization algorithms verify the superiority of the CCACO.