Visible to the public Biblio

Filters: Keyword is CCTV  [Clear All Filters]
2022-04-25
Sunil, Ajeet, Sheth, Manav Hiren, E, Shreyas, Mohana.  2021.  Usual and Unusual Human Activity Recognition in Video using Deep Learning and Artificial Intelligence for Security Applications. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–6.
The main objective of Human Activity Recognition (HAR) is to detect various activities in video frames. Video surveillance is an import application for various security reasons, therefore it is essential to classify activities as usual and unusual. This paper implements the deep learning model that has the ability to classify and localize the activities detected using a Single Shot Detector (SSD) algorithm with a bounding box, which is explicitly trained to detect usual and unusual activities for security surveillance applications. Further this model can be deployed in public places to improve safety and security of individuals. The SSD model is designed and trained using transfer learning approach. Performance evaluation metrics are visualised using Tensor Board tool. This paper further discusses the challenges in real-time implementation.
2021-05-13
Jain, Harsh, Vikram, Aditya, Mohana, Kashyap, Ankit, Jain, Ayush.  2020.  Weapon Detection using Artificial Intelligence and Deep Learning for Security Applications. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :193—198.
Security is always a main concern in every domain, due to a rise in crime rate in a crowded event or suspicious lonely areas. Abnormal detection and monitoring have major applications of computer vision to tackle various problems. Due to growing demand in the protection of safety, security and personal properties, needs and deployment of video surveillance systems can recognize and interpret the scene and anomaly events play a vital role in intelligence monitoring. This paper implements automatic gun (or) weapon detection using a convolution neural network (CNN) based SSD and Faster RCNN algorithms. Proposed implementation uses two types of datasets. One dataset, which had pre-labelled images and the other one is a set of images, which were labelled manually. Results are tabulated, both algorithms achieve good accuracy, but their application in real situations can be based on the trade-off between speed and accuracy.
2017-11-20
Costin, Andrei.  2016.  Security of CCTV and Video Surveillance Systems: Threats, Vulnerabilities, Attacks, and Mitigations. Proceedings of the 6th International Workshop on Trustworthy Embedded Devices. :45–54.

Video surveillance, closed-circuit TV and IP-camera systems became virtually omnipresent and indispensable for many organizations, businesses, and users. Their main purpose is to provide physical security, increase safety, and prevent crime. They also became increasingly complex, comprising many communication means, embedded hardware and non-trivial firmware. However, most research to date focused mainly on the privacy aspects of such systems, and did not fully address their issues related to cyber-security in general, and visual layer (i.e., imagery semantics) attacks in particular. In this paper, we conduct a systematic review of existing and novel threats in video surveillance, closed-circuit TV and IP-camera systems based on publicly available data. The insights can then be used to better understand and identify the security and the privacy risks associated with the development, deployment and use of these systems. We study existing and novel threats, along with their existing or possible countermeasures, and summarize this knowledge into a comprehensive table that can be used in a practical way as a security checklist when assessing cyber-security level of existing or new CCTV designs and deployments. We also provide a set of recommendations and mitigations that can help improve the security and privacy levels provided by the hardware, the firmware, the network communications and the operation of video surveillance systems. We hope the findings in this paper will provide a valuable knowledge of the threat landscape that such systems are exposed to, as well as promote further research and widen the scope of this field beyond its current boundaries.