Visible to the public Biblio

Filters: Keyword is surveillance application  [Clear All Filters]
2021-02-08
Chiang, M., Lau, S..  2011.  Automatic multiple faces tracking and detection using improved edge detector algorithm. 2011 7th International Conference on Information Technology in Asia. :1—5.

The automatic face tracking and detection has been one of the fastest developing areas due to its wide range of application, security and surveillance application in particular. It has been one of the most interest subjects, which suppose but yet to be wholly explored in various research areas due to various distinctive factors: varying ethnic groups, sizes, orientations, poses, occlusions and lighting conditions. The focus of this paper is to propose an improve algorithm to speed up the face tracking and detection process with the simple and efficient proposed novel edge detector to reject the non-face-likes regions, hence reduce the false detection rate in an automatic face tracking and detection in still images with multiple faces for facial expression system. The correct rates of 95.9% on the Haar face detection and proposed novel edge detector, which is higher 6.1% than the primitive integration of Haar and canny edge detector.

2017-11-20
Wei, Zhuo, Yan, Zheng, Wu, Yongdong, Deng, Robert Huijie.  2016.  Trustworthy Authentication on Scalable Surveillance Video with Background Model Support. ACM Trans. Multimedia Comput. Commun. Appl.. 12:64:1–64:20.

H.264/SVC (Scalable Video Coding) codestreams, which consist of a single base layer and multiple enhancement layers, are designed for quality, spatial, and temporal scalabilities. They can be transmitted over networks of different bandwidths and seamlessly accessed by various terminal devices. With a huge amount of video surveillance and various devices becoming an integral part of the security infrastructure, the industry is currently starting to use the SVC standard to process digital video for surveillance applications such that clients with different network bandwidth connections and display capabilities can seamlessly access various SVC surveillance (sub)codestreams. In order to guarantee the trustworthiness and integrity of received SVC codestreams, engineers and researchers have proposed several authentication schemes to protect video data. However, existing algorithms cannot simultaneously satisfy both efficiency and robustness for SVC surveillance codestreams. Hence, in this article, a highly efficient and robust authentication scheme, named TrustSSV (Trust Scalable Surveillance Video), is proposed. Based on quality/spatial scalable characteristics of SVC codestreams, TrustSSV combines cryptographic and content-based authentication techniques to authenticate the base layer and enhancement layers, respectively. Based on temporal scalable characteristics of surveillance codestreams, TrustSSV extracts, updates, and authenticates foreground features for each access unit dynamically with background model support. Using SVC test sequences, our experimental results indicate that the scheme is able to distinguish between content-preserving and content-changing manipulations and to pinpoint tampered locations. Compared with existing schemes, the proposed scheme incurs very small computation and communication costs.