Visible to the public Biblio

Filters: Keyword is Probability density function  [Clear All Filters]
2022-10-16
Koşu, Semiha, Ata, Serdar Özgür, Durak-Ata, Lütfiye.  2020.  Physical Layer Security Analysis of Cooperative Mobile Communication Systems with Eavesdropper Employing MRC. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
In this paper, physical layer security (PLS) analysis of a cooperative wireless communication system in which the source and destination nodes communicate via a relay employing decode-and-forward protocol is performed for double Rayleigh fading channel model. For the system where the source, relay and target have single antenna, an eavesdropper with multiantenna listens the source and relay together by using maximum-ratio-combining, secrecy outage and positive secrecy capacity possibilities are obtained in closed-form. The theoretical results are verified by Monte-Carlo simulations. From the results, it is observed that as the number of antennas of the eavesdropper is increased, the PLS performance of the system worsens.
2022-07-29
Lv, Tianxiang, Bao, Qihao, Chen, Haibo, Zhang, Chi.  2021.  A Testing Method for Object-oriented Program based on Adaptive Random Testing with Variable Probability. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1155–1156.
Object-oriented program (OOP) is very popular in these years for its advantages, but the testing method for OOP is still not mature enough. To deal with the problem that it is impossible to generate the probability density function by simply numeralizing a point in the test case caused by the complex structure of the object-oriented test case, we propose the Adaptive Random Testing through Test Profile for Object-Oriented software (ARTTP-OO). It generates a test case at the edge of the input field and calculates the distance between object-oriented test cases using Object and Method Invocation Sequence Similarity (OMISS) metric formula. And the probability density function is generated by the distance to select the test cases, thereby realizing the application of ARTTP algorithm in OOP. The experimental results indicate the proposed ARTTP-OO consumes less time cost without reducing the detection effectiveness.
2022-07-05
Parizad, Ali, Hatziadoniu, Constantine.  2021.  False Data Detection in Power System Under State Variables' Cyber Attacks Using Information Theory. 2021 IEEE Power and Energy Conference at Illinois (PECI). :1—8.
State estimation (SE) plays a vital role in the reliable operation of modern power systems, gives situational awareness to the operators, and is employed in different functions of the Energy Management System (EMS), such as Optimal Power Flow (OPF), Contingency Analysis (CA), power market mechanism, etc. To increase SE's accuracy and protect it from compromised measurements, Bad Data Detection (BDD) algorithm is employed. However, the integration of Information and Communication Technologies (ICT) into the modern power system makes it a complicated cyber-physical system (CPS). It gives this opportunity to an adversary to find some loopholes and flaws, penetrate to CPS layer, inject false data, bypass existing BDD schemes, and consequently, result in security and stability issues. This paper employs a semi-supervised learning method to find normal data patterns and address the False Data Injection Attack (FDIA) problem. Based on this idea, the Probability Distribution Functions (PDFs) of measurement variations are derived for training and test data sets. Two distinct indices, i.e., Absolute Distance (AD) and Relative Entropy (RE), a concept in Information Theory, are utilized to find the distance between these two PDFs. In case an intruder compromises data, the related PDF changes. However, we demonstrate that AD fails to detect these changes. On the contrary, the RE index changes significantly and can properly detect FDIA. This proposed method can be used in a real-time attack detection process where the larger RE index indicates the possibility of an attack on the real-time data. To investigate the proposed methodology's effectiveness, we utilize the New York Independent System Operator (NYISO) data (Jan.-Dec. 2019) with a 5-minute resolution and map it to the IEEE 14-bus test system, and prepare an appropriate data set. After that, two different case studies (attacks on voltage magnitude ( Vm), and phase angle (θ)) with different attack parameters (i.e., 0.90, 0.95, 0.98, 1.02, 1.05, and 1.10) are defined to assess the impact of an attack on the state variables at different buses. The results show that RE index is a robust and reliable index, appropriate for real-time applications, and can detect FDIA in most of the defined case studies.
2021-03-15
Ibrahim, A. A., Ata, S. Özgür, Durak-Ata, L..  2020.  Performance Analysis of FSO Systems over Imperfect Málaga Atmospheric Turbulence Channels with Pointing Errors. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–5.
In this study, we investigate the performance of FSO communication systems under more realistic channel model considering atmospheric turbulence, pointing errors and channel estimation errors together. For this aim, we first derived the composite probability density function (PDF) of imperfect Málaga turbulence channel with pointing errors. Then using this PDF, we obtained bit-error-rate (BER) and ergodic channel capacity (ECC) expressions in closed forms. Additionally, we present the BER and ECC metrics of imperfect Gamma-Gamma and K turbulence channels with pointing errors as special cases of Málaga channel. We further verified our analytic results through Monte-Carlo simulations.
2020-11-20
Sarochar, J., Acharya, I., Riggs, H., Sundararajan, A., Wei, L., Olowu, T., Sarwat, A. I..  2019.  Synthesizing Energy Consumption Data Using a Mixture Density Network Integrated with Long Short Term Memory. 2019 IEEE Green Technologies Conference(GreenTech). :1—4.
Smart cities comprise multiple critical infrastructures, two of which are the power grid and communication networks, backed by centralized data analytics and storage. To effectively model the interdependencies between these infrastructures and enable a greater understanding of how communities respond to and impact them, large amounts of varied, real-world data on residential and commercial consumer energy consumption, load patterns, and associated human behavioral impacts are required. The dissemination of such data to the research communities is, however, largely restricted because of security and privacy concerns. This paper creates an opportunity for the development and dissemination of synthetic energy consumption data which is inherently anonymous but holds similarities to the properties of real data. This paper explores a framework using mixture density network (MDN) model integrated with a multi-layered Long Short-Term Memory (LSTM) network which shows promise in this area of research. The model is trained using an initial sample recorded from residential smart meters in the state of Florida, and is used to generate fully synthetic energy consumption data. The synthesized data will be made publicly available for interested users.
2020-09-14
HANJRI, Adnane EL, HAYAR, Aawatif, Haqiq, Abdelkrim.  2019.  Combined Compressive Sampling Techniques and Features Detection using Kullback Leibler Distance to Manage Handovers. 2019 IEEE International Smart Cities Conference (ISC2). :504–507.
In this paper, we present a new Handover technique which combines Distribution Analysis Detector and Compressive Sampling Techniques. The proposed approach consists of analysing Received Signal probability density function instead of demodulating and analysing Received Signal itself as in classical handover. In this method we will exploit some mathematical tools like Kullback Leibler Distance, Akaike Information Criterion (AIC) and Akaike weights, in order to decide blindly the best handover and the best Base Station (BS) for each user. The Compressive Sampling algorithm is designed to take advantage from the primary signals sparsity and to keep the linearity and properties of the original signal in order to be able to apply Distribution Analysis Detector on the compressed measurements.
2020-07-13
Qiu, Yu, Wang, Jin-Yuan, Lin, Sheng-Hong, Wang, Jun-Bo, Lin, Min.  2019.  Secrecy Outage Probability Analysis for Visible Light Communications with SWIPT and Random Terminals. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
This paper investigates the physical-layer data secure transmission for indoor visible light communications (VLC) with simultaneous wireless information and power transfer (SWIPT) and random terminals. A typical indoor VLC system including one transmitter, one desired information receiver and one energy receiver is considered. The two receivers are randomly deployed on the floor, and the random channel characteristics is analyzed. Based on the possibility that the energy receiver is a passive information eavesdropper, the secrecy outage probability (SOP) is employed to evaluate the system performance. A closed-from expression for the lower bound of the SOP is obtained. For the derived lower bound of SOP, the theoretical results match the simulation results very well, which indicates that the derived lower bound can be used to evaluate the secrecy performance. Moreover, the gap between the results of the lower bound and the exact simulation results is also small, which verifies the correctness of the analysis method to obtain the lower bound.
2020-04-17
Alim, Adil, Zhao, Xujiang, Cho, Jin-Hee, Chen, Feng.  2019.  Uncertainty-Aware Opinion Inference Under Adversarial Attacks. 2019 IEEE International Conference on Big Data (Big Data). :6—15.

Inference of unknown opinions with uncertain, adversarial (e.g., incorrect or conflicting) evidence in large datasets is not a trivial task. Without proper handling, it can easily mislead decision making in data mining tasks. In this work, we propose a highly scalable opinion inference probabilistic model, namely Adversarial Collective Opinion Inference (Adv-COI), which provides a solution to infer unknown opinions with high scalability and robustness under the presence of uncertain, adversarial evidence by enhancing Collective Subjective Logic (CSL) which is developed by combining SL and Probabilistic Soft Logic (PSL). The key idea behind the Adv-COI is to learn a model of robust ways against uncertain, adversarial evidence which is formulated as a min-max problem. We validate the out-performance of the Adv-COI compared to baseline models and its competitive counterparts under possible adversarial attacks on the logic-rule based structured data and white and black box adversarial attacks under both clean and perturbed semi-synthetic and real-world datasets in three real world applications. The results show that the Adv-COI generates the lowest mean absolute error in the expected truth probability while producing the lowest running time among all.

2019-09-05
Ta, H. Q., Kim, S. W..  2019.  Covert Communication Under Channel Uncertainty and Noise Uncertainty. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1-6.

Covert or low probability of detection communication is crucial to protect user privacy and provide a strong security. We analyze the joint impact of imperfect knowledge of the channel gain (channel uncertainty) and noise power (noise uncertainty) on the average probability of detection error at the eavesdropper and the covert throughput in Rayleigh fading channel. We characterize the covert throughput gain provided by the channel uncertainty as well as the covert throughput loss caused by the channel fading as a function of the noise uncertainty. Our result shows that the channel fading is essential to hiding the signal transmission, particularly when the noise uncertainty is below a threshold and/or the receive SNR is above a threshold. The impact of the channel uncertainty on the average probability of detection error and covert throughput is more significant when the noise uncertainty is larger.

2019-05-20
Goncharov, N. I., Goncharov, I. V., Parinov, P. A., Dushkin, A. V., Maximova, M. M..  2019.  Modeling of Information Processes for Modern Information System Security Assessment. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1758-1763.

A new approach of a formalism of hybrid automatons has been proposed for the analysis of conflict processes between the information system and the information's security malefactor. An example of probability-based assessment on malefactor's victory has been given and the possibility to abstract from a specific type of probability density function for the residence time of parties to the conflict in their possible states. A model of the distribution of destructive informational influences in the information system to connect the process of spread of destructive information processes and the process of changing subjects' states of the information system has been proposed. An example of the destructive information processes spread analysis has been given.

2019-01-21
Thoen, B., Wielandt, S., Strycker, L. De.  2018.  Fingerprinting Method for Acoustic Localization Using Low-Profile Microphone Arrays. 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN). :1–7.

Indoor localization of unknown acoustic events with MEMS microphone arrays have a huge potential in applications like home assisted living and surveillance. This article presents an Angle of Arrival (AoA) fingerprinting method for use in Wireless Acoustic Sensor Networks (WASNs) with low-profile microphone arrays. In a first research phase, acoustic measurements are performed in an anechoic room to evaluate two computationally efficient time domain delay-based AoA algorithms: one based on dot product calculations and another based on dot products with a PHAse Transform (PHAT). The evaluation of the algorithms is conducted with two sound events: white noise and a female voice. The algorithms are able to calculate the AoA with Root Mean Square Errors (RMSEs) of 3.5° for white noise and 9.8° to 16° for female vocal sounds. In the second research phase, an AoA fingerprinting algorithm is developed for acoustic event localization. The proposed solution is experimentally verified in a room of 4.25 m by 9.20 m with 4 acoustic sensor nodes. Acoustic fingerprints of white noise, recorded along a predefined grid in the room, are used to localize white noise and vocal sounds. The localization errors are evaluated using one node at a time, resulting in mean localization errors between 0.65 m and 0.98 m for white noise and between 1.18 m and 1.52 m for vocal sounds.

2018-09-28
Qu, X., Mu, L..  2017.  An augmented cubature Kalman filter for nonlinear dynamical systems with random parameters. 2017 36th Chinese Control Conference (CCC). :1114–1118.

In this paper, we investigate the Bayesian filtering problem for discrete nonlinear dynamical systems which contain random parameters. An augmented cubature Kalman filter (CKF) is developed to deal with the random parameters, where the state vector is enlarged by incorporating the random parameters. The corresponding number of cubature points is increased, so the augmented CKF method requires more computational complexity. However, the estimation accuracy is improved in comparison with that of the classical CKF method which uses the nominal values of the random parameters. An application to the mobile source localization with time difference of arrival (TDOA) measurements and random sensor positions is provided where the simulation results illustrate that the augmented CKF method leads to a superior performance in comparison with the classical CKF method.

2018-08-23
Lagunas, E., Rugini, L..  2017.  Performance of compressive sensing based energy detection. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). :1–5.

This paper investigates closed-form expressions to evaluate the performance of the Compressive Sensing (CS) based Energy Detector (ED). The conventional way to approximate the probability density function of the ED test statistic invokes the central limit theorem and considers the decision variable as Gaussian. This approach, however, provides good approximation only if the number of samples is large enough. This is not usually the case in CS framework, where the goal is to keep the sample size low. Moreover, working with a reduced number of measurements is of practical interest for general spectrum sensing in cognitive radio applications, where the sensing time should be sufficiently short since any time spent for sensing cannot be used for data transmission on the detected idle channels. In this paper, we make use of low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. More precisely, this paper provides new closed-form expressions for accurate evaluation of the CS-based ED performance as a function of the compressive ratio and the Signal-to-Noise Ratio (SNR). Simulation results demonstrate the increased accuracy of the proposed equations compared to existing works.

2015-04-30
Chia-Feng Juang, Chi-Wei Hung, Chia-Hung Hsu.  2014.  Rule-Based Cooperative Continuous Ant Colony Optimization to Improve the Accuracy of Fuzzy System Design. Fuzzy Systems, IEEE Transactions on. 22:723-735.

This paper proposes a cooperative continuous ant colony optimization (CCACO) algorithm and applies it to address the accuracy-oriented fuzzy systems (FSs) design problems. All of the free parameters in a zero- or first-order Takagi-Sugeno-Kang (TSK) FS are optimized through CCACO. The CCACO algorithm performs optimization through multiple ant colonies, where each ant colony is only responsible for optimizing the free parameters in a single fuzzy rule. The ant colonies cooperate to design a complete FS, with a complete parameter solution vector (encoding a complete FS) that is formed by selecting a subsolution component (encoding a single fuzzy rule) from each colony. Subsolutions in each ant colony are evolved independently using a new continuous ant colony optimization algorithm. In the CCACO, solutions are updated via the techniques of pheromone-based tournament ant path selection, ant wandering operation, and best-ant-attraction refinement. The performance of the CCACO is verified through applications to fuzzy controller and predictor design problems. Comparisons with other population-based optimization algorithms verify the superiority of the CCACO.