Visible to the public Biblio

Filters: Keyword is binary classification  [Clear All Filters]
2021-03-29
Gupta, S., Buduru, A. B., Kumaraguru, P..  2020.  imdpGAN: Generating Private and Specific Data with Generative Adversarial Networks. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :64–72.
Generative Adversarial Network (GAN) and its variants have shown promising results in generating synthetic data. However, the issues with GANs are: (i) the learning happens around the training samples and the model often ends up remembering them, consequently, compromising the privacy of individual samples - this becomes a major concern when GANs are applied to training data including personally identifiable information, (ii) the randomness in generated data - there is no control over the specificity of generated samples. To address these issues, we propose imdpGAN-an information maximizing differentially private Generative Adversarial Network. It is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations. With experiments on MNIST dataset, we show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples. We perform binary classification on digit pairs to show the utility versus privacy trade-off. The classification accuracy decreases as we increase privacy levels in the framework. We also experimentally show that the training process of imdpGAN is stable but experience a 10-fold time increase as compared with other GAN frameworks. Finally, we extend imdpGAN framework to CelebA dataset to show how the privacy and learned representations can be used to control the specificity of the output.
2020-12-01
Abdulhammed, R., Faezipour, M., Musafer, H., Abuzneid, A..  2019.  Efficient Network Intrusion Detection Using PCA-Based Dimensionality Reduction of Features. 2019 International Symposium on Networks, Computers and Communications (ISNCC). :1—6.

Designing a machine learning based network intrusion detection system (IDS) with high-dimensional features can lead to prolonged classification processes. This is while low-dimensional features can reduce these processes. Moreover, classification of network traffic with imbalanced class distributions has posed a significant drawback on the performance attainable by most well-known classifiers. With the presence of imbalanced data, the known metrics may fail to provide adequate information about the performance of the classifier. This study first uses Principal Component Analysis (PCA) as a feature dimensionality reduction approach. The resulting low-dimensional features are then used to build various classifiers such as Random Forest (RF), Bayesian Network, Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) for designing an IDS. The experimental findings with low-dimensional features in binary and multi-class classification show better performance in terms of Detection Rate (DR), F-Measure, False Alarm Rate (FAR), and Accuracy. Furthermore, in this paper, we apply a Multi-Class Combined performance metric Combi ned Mc with respect to class distribution through incorporating FAR, DR, Accuracy, and class distribution parameters. In addition, we developed a uniform distribution based balancing approach to handle the imbalanced distribution of the minority class instances in the CICIDS2017 network intrusion dataset. We were able to reduce the CICIDS2017 dataset's feature dimensions from 81 to 10 using PCA, while maintaining a high accuracy of 99.6% in multi-class and binary classification.

2020-05-18
Lee, Hyun-Young, Kang, Seung-Shik.  2019.  Word Embedding Method of SMS Messages for Spam Message Filtering. 2019 IEEE International Conference on Big Data and Smart Computing (BigComp). :1–4.
SVM has been one of the most popular machine learning method for the binary classification such as sentiment analysis and spam message filtering. We explored a word embedding method for the construction of a feature vector and the deep learning method for the binary classification. CBOW is used as a word embedding technique and feedforward neural network is applied to classify SMS messages into ham or spam. The accuracy of the two classification methods of SVM and neural network are compared for the binary classification. The experimental result shows that the accuracy of deep learning method is better than the conventional machine learning method of SVM-light in the binary classification.
2020-05-15
Ge, Mengmeng, Fu, Xiping, Syed, Naeem, Baig, Zubair, Teo, Gideon, Robles-Kelly, Antonio.  2019.  Deep Learning-Based Intrusion Detection for IoT Networks. 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC). :256—25609.

Internet of Things (IoT) has an immense potential for a plethora of applications ranging from healthcare automation to defence networks and the power grid. The security of an IoT network is essentially paramount to the security of the underlying computing and communication infrastructure. However, due to constrained resources and limited computational capabilities, IoT networks are prone to various attacks. Thus, safeguarding the IoT network from adversarial attacks is of vital importance and can be realised through planning and deployment of effective security controls; one such control being an intrusion detection system. In this paper, we present a novel intrusion detection scheme for IoT networks that classifies traffic flow through the application of deep learning concepts. We adopt a newly published IoT dataset and generate generic features from the field information in packet level. We develop a feed-forward neural networks model for binary and multi-class classification including denial of service, distributed denial of service, reconnaissance and information theft attacks against IoT devices. Results obtained through the evaluation of the proposed scheme via the processed dataset illustrate a high classification accuracy.

2017-11-20
You, L., Li, Y., Wang, Y., Zhang, J., Yang, Y..  2016.  A deep learning-based RNNs model for automatic security audit of short messages. 2016 16th International Symposium on Communications and Information Technologies (ISCIT). :225–229.

The traditional text classification methods usually follow this process: first, a sentence can be considered as a bag of words (BOW), then transformed into sentence feature vector which can be classified by some methods, such as maximum entropy (ME), Naive Bayes (NB), support vector machines (SVM), and so on. However, when these methods are applied to text classification, we usually can not obtain an ideal result. The most important reason is that the semantic relations between words is very important for text categorization, however, the traditional method can not capture it. Sentiment classification, as a special case of text classification, is binary classification (positive or negative). Inspired by the sentiment analysis, we use a novel deep learning-based recurrent neural networks (RNNs)model for automatic security audit of short messages from prisons, which can classify short messages(secure and non-insecure). In this paper, the feature of short messages is extracted by word2vec which captures word order information, and each sentence is mapped to a feature vector. In particular, words with similar meaning are mapped to a similar position in the vector space, and then classified by RNNs. RNNs are now widely used and the network structure of RNNs determines that it can easily process the sequence data. We preprocess short messages, extract typical features from existing security and non-security short messages via word2vec, and classify short messages through RNNs which accept a fixed-sized vector as input and produce a fixed-sized vector as output. The experimental results show that the RNNs model achieves an average 92.7% accuracy which is higher than SVM.