Biblio
Intrusion detection systems define an important and dynamic research area for cybersecurity. The role of Intrusion Detection System within security architecture is to improve a security level by identification of all malicious and also suspicious events that could be observed in computer or network system. One of the more specific research areas related to intrusion detection is anomaly detection. Anomaly-based intrusion detection in networks refers to the problem of finding untypical events in the observed network traffic that do not conform to the expected normal patterns. It is assumed that everything that is untypical/anomalous could be dangerous and related to some security events. To detect anomalies many security systems implements a classification or clustering algorithms. However, recent research proved that machine learning models might misclassify adversarial events, e.g. observations which were created by applying intentionally non-random perturbations to the dataset. Such weakness could increase of false negative rate which implies undetected attacks. This fact can lead to one of the most dangerous vulnerabilities of intrusion detection systems. The goal of the research performed was verification of the anomaly detection systems ability to resist this type of attack. This paper presents the preliminary results of tests taken to investigate existence of attack vector, which can use adversarial examples to conceal a real attack from being detected by intrusion detection systems.
Defending key network infrastructure, such as Internet backbone links or the communication channels of critical infrastructure, is paramount, yet challenging. The inherently complex nature and quantity of network data impedes detecting attacks in real world settings. In this paper, we utilize features of network flows, characterized by their entropy, together with an extended version of the original Replicator Neural Network (RNN) and deep learning techniques to learn models of normality. This combination allows us to apply anomaly-based intrusion detection on arbitrarily large amounts of data and, consequently, large networks. Our approach is unsupervised and requires no labeled data. It also accurately detects network-wide anomalies without presuming that the training data is completely free of attacks. The evaluation of our intrusion detection method, on top of real network data, indicates that it can accurately detect resource exhaustion attacks and network profiling techniques of varying intensities. The developed method is efficient because a normality model can be learned by training an RNN within a few seconds only.