Visible to the public Biblio

Filters: Keyword is distributed algorithm  [Clear All Filters]
2021-11-30
Marah, Rim, Gabassi, Inssaf El, Larioui, Sanae, Yatimi, Hanane.  2020.  Security of Smart Grid Management of Smart Meter Protection. 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). :1–5.
The need of more secured and environmental energy is becoming a necessity and priority in an environment suffering from serious problems due to technological development. Since the Smart Grid is a promising alternative that supports green energy and enhances a better management of electricity, the security side has became one of the major and critical associated issues in building the communication network in the microgrid.In this paper we will present the Smart Grid Cyber security challenges and propose a distributed algorithm that face one of the biggest problems threatening the smart grid which is fires.
2021-09-16
Rachini, Ali S., Khatoun, R..  2020.  Distributed Key Management Authentication Algorithm in Internet of Things (IOT). 2020 Sixth International Conference on Mobile And Secure Services (MobiSecServ). :1–5.
Radio frequency identification system (RFID) is a wireless technology based on radio waves. These radio waves transmit data from the tag to a reader, which then transmits the information to a server. RFID tags have several advantages, they can be used in merchandise, to track vehicles, and even patients. Connecting RFID tags to internet terminal or server it called Internet of Things (IoT). Many people have shown interest in connected objects or the Internet of Things (IoT). The IoT is composed of many complementary elements each having their own specificities. The RFID is often seen as a prerequisite for the IoT. The main challenge of RFID is the security issues. Connecting RFID with IoT poses security threats and challenges which are needed to be discussed properly before deployment. In this paper, we proposed a new distributed encryption algorithm to be used in the IoT structure in order to reduce the security risks that are confronted in RFID technology.
2017-09-05
Kolcun, Roman, Boyle, David, McCann, Julie A..  2016.  Efficient In-Network Processing for a Hardware-Heterogeneous IoT. Proceedings of the 6th International Conference on the Internet of Things. :93–101.

As the number of small, battery-operated, wireless-enabled devices deployed in various applications of Internet of Things (IoT), Wireless Sensor Networks (WSN), and Cyber-physical Systems (CPS) is rapidly increasing, so is the number of data streams that must be processed. In cases where data do not need to be archived, centrally processed, or federated, in-network data processing is becoming more common. For this purpose, various platforms like DRAGON, Innet, and CJF were proposed. However, these platforms assume that all nodes in the network are the same, i.e. the network is homogeneous. As Moore's law still applies, nodes are becoming smaller, more powerful, and more energy efficient each year; which will continue for the foreseeable future. Therefore, we can expect that as sensor networks are extended and updated, hardware heterogeneity will soon be common in networks - the same trend as can be seen in cloud computing infrastructures. This heterogeneity introduces new challenges in terms of choosing an in-network data processing node, as not only its location, but also its capabilities, must be considered. This paper introduces a new methodology to tackle this challenge, comprising three new algorithms - Request, Traverse, and Mixed - for efficiently locating an in-network data processing node, while taking into account not only position within the network but also hardware capabilities. The proposed algorithms are evaluated against a naïve approach and achieve up to 90% reduction in network traffic during long-term data processing, while spending a similar amount time in the discovery phase.

2017-05-30
Castañeda, Armando, Dolev, Danny, Trehan, Amitabh.  2016.  Compact Routing Messages in Self-healing Trees. Proceedings of the 17th International Conference on Distributed Computing and Networking. :23:1–23:10.

Existing compact routing schemes, e.g., Thorup and Zwick [SPAA 2001] and Chechik [PODC 2013], often have no means to tolerate failures, once the system has been setup and started. This paper presents, to our knowledge, the first self-healing compact routing scheme. Besides, our schemes are developed for low memory nodes, i.e., nodes need only O(log2 n) memory, and are thus, compact schemes. We introduce two algorithms of independent interest: The first is CompactFT, a novel compact version (using only O(log n) local memory) of the self-healing algorithm Forgiving Tree of Hayes et al. [PODC 2008]. The second algorithm (CompactFTZ) combines CompactFT with Thorup-Zwick's tree-based compact routing scheme [SPAA 2001] to produce a fully compact self-healing routing scheme. In the self-healing model, the adversary deletes nodes one at a time with the affected nodes self-healing locally by adding few edges. CompactFT recovers from each attack in only O(1) time and Δ messages, with only +3 degree increase and O(logΔ) graph diameter increase, over any sequence of deletions (Δ is the initial maximum degree). Additionally, CompactFTZ guarantees delivery of a packet sent from sender s as long as the receiver t has not been deleted, with only an additional O(y logΔ) latency, where y is the number of nodes that have been deleted on the path between s and t. If t has been deleted, s gets informed and the packet removed from the network.

2015-04-30
Peng Yi, Yiguang Hong.  2014.  Distributed continuous-time gradient-based algorithm for constrained optimization. Control Conference (CCC), 2014 33rd Chinese. :1563-1567.

In this paper, we consider distributed algorithm based on a continuous-time multi-agent system to solve constrained optimization problem. The global optimization objective function is taken as the sum of agents' individual objective functions under a group of convex inequality function constraints. Because the local objective functions cannot be explicitly known by all the agents, the problem has to be solved in a distributed manner with the cooperation between agents. Here we propose a continuous-time distributed gradient dynamics based on the KKT condition and Lagrangian multiplier methods to solve the optimization problem. We show that all the agents asymptotically converge to the same optimal solution with the help of a constructed Lyapunov function and a LaSalle invariance principle of hybrid systems.