Visible to the public Biblio

Filters: Keyword is security policy management  [Clear All Filters]
2021-03-29
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

2020-04-03
Ayache, Meryeme, Khoumsi, Ahmed, Erradi, Mohammed.  2019.  Managing Security Policies within Cloud Environments Using Aspect-Oriented State Machines. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1—10.

Cloud Computing is the most suitable environment for the collaboration of multiple organizations via its multi-tenancy architecture. However, due to the distributed management of policies within these collaborations, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. On the other hand, current cloud computing solutions do not offer verification tools to manage access control policies. In this paper, we propose a cloud policy verification service (CPVS), that facilitates to users the management of there own security policies within Openstack cloud environment. Specifically, the proposed cloud service offers a policy verification approach to dynamically choose the adequate policy using Aspect-Oriented Finite State Machines (AO-FSM), where pointcuts and advices are used to adopt Domain-Specific Language (DSL) state machine artifacts. The pointcuts define states' patterns representing anomalies (e.g., conflicts) that may occur in a security policy, while the advices define the actions applied at the selected pointcuts to remove the anomalies. In order to demonstrate the efficiency of our approach, we provide time and space complexities. The approach was implemented as middleware service within Openstack cloud environment. The implementation results show that the middleware can detect and resolve different policy anomalies in an efficient manner.

2019-10-22
Khelf, Roumaissa, Ghoualmi-Zine, Nacira.  2018.  IPsec/Firewall Security Policy Analysis: A Survey. 2018 International Conference on Signal, Image, Vision and their Applications (SIVA). :1–7.
As the technology reliance increases, computer networks are getting bigger and larger and so are threats and attacks. Therefore Network security becomes a major concern during this last decade. Network Security requires a combination of hardware devices and software applications. Namely, Firewalls and IPsec gateways are two technologies that provide network security protection and repose on security policies which are maintained to ensure traffic control and network safety. Nevertheless, security policy misconfigurations and inconsistency between the policy's rules produce errors and conflicts, which are often very hard to detect and consequently cause security holes and compromise the entire system functionality. In This paper, we review the related approaches which have been proposed for security policy management along with surveying the literature for conflicts detection and resolution techniques. This work highlights the advantages and limitations of the proposed solutions for security policy verification in IPsec and Firewalls and gives an overall comparison and classification of the existing approaches.
2017-11-20
Pisharody, S., Chowdhary, A., Huang, Dijiang.  2016.  Security policy checking in distributed SDN based clouds. 2016 IEEE Conference on Communications and Network Security (CNS). :19–27.

Separation of network control from devices in Software Defined Network (SDN) allows for centralized implementation and management of security policies in a cloud computing environment. The ease of programmability also makes SDN a great platform implementation of various initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant data center environment. Dynamic change of network topology, or host reconfiguration in such networks might require corresponding changes to the flow rules in the SDN based cloud environment. Verifying adherence of these new flow policies in the environment to the organizational security policies and ensuring a conflict free environment is especially challenging. In this paper, we extend the work on rule conflicts from a traditional environment to an SDN environment, introducing a new classification to describe conflicts stemming from cross-layer conflicts. Our framework ensures that in any SDN based cloud, flow rules do not have conflicts at any layer; thereby ensuring that changes to the environment do not lead to unintended consequences. We demonstrate the correctness, feasibility and scalability of our framework through a proof-of-concept prototype.