Visible to the public Biblio

Filters: Keyword is IoT device security  [Clear All Filters]
2020-10-06
Payne, Josh, Budhraja, Karan, Kundu, Ashish.  2019.  How Secure Is Your IoT Network? 2019 IEEE International Congress on Internet of Things (ICIOT). :181—188.

The proliferation of IoT devices in smart homes, hospitals, and enterprise networks is wide-spread and continuing to increase in a superlinear manner. The question is: how can one assess the security of an IoT network in a holistic manner? In this paper, we have explored two dimensions of security assessment- using vulnerability information and attack vectors of IoT devices and their underlying components (compositional security scores) and using SIEM logs captured from the communications and operations of such devices in a network (dynamic activity metrics). These measures are used to evaluate the security of IoT devices and the overall IoT network, demonstrating the effectiveness of attack circuits as practical tools for computing security metrics (exploitability, impact, and risk to confidentiality, integrity, and availability) of the network. We decided to approach threat modeling using attack graphs. To that end, we propose the notion of attack circuits, which are generated from input/output pairs constructed from CVEs using NLP, and an attack graph composed of these circuits. Our system provides insight into possible attack paths an adversary may utilize based on their exploitability, impact, or overall risk. We have performed experiments on IoT networks to demonstrate the efficacy of the proposed techniques.

2020-06-01
Alizai, Zahoor Ahmed, Tareen, Noquia Fatima, Jadoon, Iqra.  2018.  Improved IoT Device Authentication Scheme Using Device Capability and Digital Signatures. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :1–5.
Internet of Things (IoT) device authentication is weighed as a very important step from security perspective. Privacy and security of the IoT devices and applications is the major issue. From security perspective, important issue that needs to be addressed is the authentication mechanism, it has to be secure from different types of attacks and is easy to implement. The paper gives general idea about how different authentication mechanisms work, and then secure and efficient multi-factor device authentication scheme idea is proposed. The proposed scheme idea uses digital signatures and device capability to authenticate a device. In the proposed scheme device will only be allowed into the network if it is successfully authenticated through multi-factor authentication otherwise the authentication process fails and whole authentication process will restart. By analyzing the proposed scheme idea, it can be seen that the scheme is efficient and has less over head. The scheme not only authenticates the device very efficiently through multi-factor authentication but also authenticates the authentication server with the help of digital signatures. The proposed scheme also mitigates the common attacks like replay and man in the middle because of nonce and timestamp.
2017-11-20
Sahu, A., Singh, A..  2016.  Securing IoT devices using JavaScript based sandbox. 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT). :1476–1482.

Internet of Things is gaining research attention as one of the important fields that will affect our daily life vastly. Today, around us this revolutionary technology is growing and evolving day by day. This technology offers certain benefits like automatic processing, improved logistics and device communication that would help us to improve our social life, health, living standards and infrastructure. However, due to their simple architecture and presence on wide variety of fields they pose serious concern to security. Due to the low end architecture there are many security issues associated with IoT network devices. In this paper, we try to address the security issue by proposing JavaScript sandbox as a method to execute IoT program. Using this sandbox we also implement the strategy to control the execution of the sandbox while the program is being executed on it.