Biblio
A mobile ad hoc network (MANET) is vulnerable to many types of attacks. Thus, security has turned out to be an important factor to facilitate secured communication between mobile nodes in a wireless environment. In this paper we propose a new approach to provide reliable and secure data transmission in MANETs under possible blackhole attacks based on ad hoc on-demand multipath distance vector (AOMDV) protocol and homomorphic encryption scheme for security. The performance of the proposed scheme is stable but that of AOMDV is found to be degrading with the intrusion of malicious nodes in the network. Simulation results show the improvement of packet delivery ratio and network throughput in the presence of blackhole nodes in our proposed scheme.
In a Semi-autonomic cloud auditing architecture we weaved in privacy enhancing mechanisms [15] by applying the public key version of the Somewhat homomorphic encryption (SHE) scheme from [4]. It turns out that the performance of the SHE can be significantly improved by carefully deriving relevant crypto parameters from the concrete cloud auditing use cases for which the scheme serves as a privacy enhancing approach. We provide a generic algorithm for finding good SHE parameters with respect to a given use case scenario by analyzing and taking into consideration security, correctness and performance of the scheme. Also, to show the relevance of our proposed algorithms we apply it to two predominant cloud auditing use cases.
Cloud computing is becoming the main computing model in the future due to its advantages such as high resource utilization rate and save high cost of performance. The public environments is become necessary to secure their storage and transmission against possible attacks such as known-plain-text attack and semantic security. How to ensure the data security and the privacy preserving, however, becomes a huge obstacle to its development. The traditional way to solve Secure Multiparty Computation (SMC) problem is using Trusted Third Party (TTP), however, TTPs are particularly hard to achieve and compute complexity. To protect user's privacy data, the encrypted outsourcing data are generally stored and processed in cloud computing by applying homomorphic encryption. According to above situation, we propose Elliptic Curve Cryptography (ECC) based homomorphic encryption scheme for SMC problem that is dramatically reduced computation and communication cost. It shows that the scheme has advantages in energy consumption, communication consumption and privacy protection through the comparison experiment between ECC based homomorphic encryption and RSA&Paillier encryption algorithm. Further evidence, the scheme of homomorphic encryption scheme based on ECC is applied to the calculation of GPS data of the earthquake and prove it is proved that the scheme is feasible, excellent encryption effect and high security.